Cho hình chóp S.ABCD có đáy là hình vuông ; SA = AB = a và SA ⊥ (ABCD). Gọi M là trung điểm AD, tính khoảng cách giữa hai đường thẳng SC và BM.
Cho hình chóp S.ABCD có đáy là hình vuông; SA=AB=a và S A ⊥ ( A B C D ) Gọi M là trung điểm AD, tính khoảng cách giữa hai đường thẳng SC và BM
Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a√2. Gọi I và K lần lượt là trung điểm của AD và BC.
a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC).
b) Tính khoảng cách giữa hai đường thẳng AD và SB.
Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết SA=2a, AD=a, SA=3a và SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh CD. Khoảng cách giữa hai đường thẳng SC và BM bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB=a; AD= 2a; SA vuông góc với đáy, SA=a√2. Xác định và tính góc giữa. a) Các đường thẳng SB, SC, SD với mp đáy. b) SC với các mp (SAD) và ( SAB). c) SA với mp (SCD). d) SB và (SAC).
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA = 2a và SA vuông góc với đáy. Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AM và SC
A. a 5 5
B. a 6 6
C. 2 a 21 21
D. a 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA=SB=SC=SD=a√2; O là tâm của hình vuông ABCD.
a) C/m (SAC) và (SBD) cùng vuông góc với (ABCD).
b) C/m (SAC) ⊥(SBD)
c) Tính khoảg cách từ S đến (ABCD)
d) Tính góc giữa đường SB và (ABCD).
e) Gọi M là trung điểm của CD, hạ OH⊥SM, chứng minh H là trực tâm tam giác SCD
f) Tính góc giưa hai mặt phẳng (SCD) và (ABCD)
g) Tính khoảng cách giữa SM và BC; SM và AB.
1. Cho tứ diện ABCD có AD vuông góc (ABC), AD=a√3. Góc giữa (ABC) và (DBC) bằng 60⁰. Gọi M là trung điểm AD. Tính khoảng cách từ M đến (BCD). 2. Cho hình chóp S.ABCD có SA vuông góc (ABCD), đáy ABCD là hình chữ nhật tâm O. Biết AD=2a, SA=a. Khoảng cách từ O đến (SCD) bằng
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a và SA=SB=SC=SD=a^2 gọi O là giao điểm của AC và BD Tính góc giữa đường thẳng SC và mặt phẳng ABCD