Cho hình chóp S.ABCD có đáy là hình vuông ; SA = AB = a và SA ⊥ (ABCD). Gọi M là trung điểm AD, tính khoảng cách giữa hai đường thẳng SC và BM.
Cho hình chóp S.ABCD có đáy là hình vuông; SA = SB = a và SA vuông góc (ABCD) Gọi M là trung điểm AD, tính khoảng cách giữa hai đường thẳng SC và BM
A. a 14 6
B. 6 a 14
C. a 14 2
D. 2 a 14
Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết SA=2a, AD=a, SA=3a và SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh CD. Khoảng cách giữa hai đường thẳng SC và BM bằng:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA = 2a và SA vuông góc với đáy. Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AM và SC
A. a 5 5
B. a 6 6
C. 2 a 21 21
D. a 2
Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a√2. Gọi I và K lần lượt là trung điểm của AD và BC.
a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC).
b) Tính khoảng cách giữa hai đường thẳng AD và SB.
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB =a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 0 .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
A. d = a 1315 89
B. d = a 1513 89
C. d = 2 a 1315 89
D. d = 2 a 1513 89
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a . Gọi M, N lần lượt là trung điểm của các cạnh AB, AD; H là giao điểm của CN và DM. Biết SH=a và vuông góc với mặt đáy (ABCD). Khoảng cách giữa hai đường thẳng MD và SC là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, cạnh bên SA vuông góc với đáy và SA = a 2 . Gọi M là trung điểm của AB. Tính khoảng cách d giữa hai đường thẳng SM và BC
A . d = a 3 2
B . d = a 2 3
C . d = a 3 3
D . d = a 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh A. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm I thuộc đoạn AB sao cho BI = 2AI. Góc giữa mặt bên (SCD) và mặt đáy (ABCD) bằng 60 0 . Tính khoảng cách giữa hai đường thẳng AD và SC.
A . 93 31 a
B . 3 93 31 a
C . 93 31
D . 3 93 31 a