Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lê Phước Thịnh

Cho hình chóp S.ABCD có ABCD là hình chữ nhật, \(AB=a;AD=a\sqrt{3}\), cạnh bên SA vuông góc (ABCD). Biết mp(SBC) tạo với đáy một góc 60 độ. Tính \(cos\widehat{\left(SBC\right);\left(SCD\right)}\)

 

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 10:31

Lần lượt kẻ \(AE\perp SB\)  (1) và \(AF\perp SD\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AE\) (2)

(1);(2) \(\Rightarrow AE\perp\left(SBC\right)\)

Hoàn toàn tương tự ta có \(AF\perp\left(SCD\right)\)

\(\Rightarrow\) Góc giữa (SBC) và (SCD) là góc giữa AE và AF

Cũng từ \(BC\perp\left(SAB\right)\) mà \(BC=\left(SBC\right)\cap\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBCD) và đáy

\(\Rightarrow\widehat{SBA}=60^0\Rightarrow SA=AB.tan60^0=a\sqrt{3}\)

Hệ thức lượng: \(\dfrac{1}{AE^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AE=\dfrac{a\sqrt{3}}{2}\)

\(\dfrac{1}{AF^2}=\dfrac{1}{SA^2}+\dfrac{1}{AD^2}\Rightarrow AF=\dfrac{a\sqrt{6}}{2}\)

\(SB=\sqrt{SA^2+AB^2}=2a\) ; \(SD=a\sqrt{6}\)

\(BD=\sqrt{AB^2+AD^2}=2a\Rightarrow cos\widehat{BSD}=\dfrac{SB^2+SD^2-BD^2}{2SB.SD}=\dfrac{\sqrt{6}}{4}\)

\(SE=\sqrt{SA^2-AE^2}=\dfrac{3a}{2}\) ; \(SF=\sqrt{SA^2-AF^2}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow EF=\sqrt{SE^2+SF^2-2SE.SF.cos\widehat{BSD}}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow cos\widehat{EAF}=\dfrac{AE^2+AF^2-EF^2}{2AE.AF}=\dfrac{\sqrt{2}}{4}\)

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 10:33

loading...


Các câu hỏi tương tự
Nguyễn Lê Phước Thịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết