Cho hình bình hành ABCD xác định. Tìm điểm M thỏa mãn \(3\overrightarrow{AM}=\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BD}\)
a) Cho tứ giác ABCD không phải là hình bình hành, AC cắt BD tại O có OB = OD. Gọi M, N lần lượt là trung điểm của AB và CD, MN cắt AC tại I. Chứng minh rằng \(\overrightarrow{MI}=\overrightarrow{IN}\)
b) Cho tứ giác ABCD có 2 đường chéo cắt nhau tại I. Biết \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\). Chứng minh rằng tứ giác ABCD là hình bình hành
Cho hình bình hành ABCD tâm O. Xác định vị trí điểm M thỏa mãn \(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AM}\). Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và dựng điểm K sao cho \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\). Khi đó, điểm K trùng với
Cho hình bình hành ABCD . Ba điểm M,N,P thỏa mãn \(\overrightarrow{MA}+3\overrightarrow{MB},2\overrightarrow{NB}+3\overrightarrow{NC},\overrightarrow{PM}+2\overrightarrow{PN}=\overrightarrow{0}\) Phân tích vecto AP theo hai vecto \(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{BD}\). Ta được
Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\). Câu 2. Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b) Tìm tọa độ hình chiếu của A lên BC. Câu 3. Cho tam giác ABCđều cạnh a , có AH là đường trung tuyến. Tính \(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|\). Câu 4. Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất? Câu 5. Để kéo đường dây điện băng qua một cái hồ hình chữ nhậtvới độ dài AB =140m , AD = 50m. Người ta dự định làm cột điện liên tiếp thẳng hàng và cách đều nhau. Cột thứ nhất nằm trên bờ AB và cách đỉnh A một khoảng bằng 10m. Cột thứ năm nằm trên bờ CD và cách đỉnh C một khoảng bằng 30m. Tính khoảng cách từ cột thứ tư đến bờ AD.
Câu 1: cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
A.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}\)
B. \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{BC}\)
C.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{AD}\)
D.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CA}\)
Câu 2: Cho 4 điểm A,B,C,D. Đẳng thức nào sau đây đúng?
A.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
B.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{BC}\)
C.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{BD}\)
D.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{DA}+\overrightarrow{BC}\)
Câu 3: cho ΔABC, vẽ bên ngoài tam giác các hình bình hành ABEF, ACPQ,BCMN. Xét các mệnh đề:
(I) \(\overrightarrow{NE}+\overrightarrow{FQ}=\overrightarrow{MP}\)
(II) \(\overrightarrow{EF}+\overrightarrow{QP}=\overrightarrow{-MN}\)
(III) \(\overrightarrow{AP}+\overrightarrow{BF}+\overrightarrow{CN}=\overrightarrow{AQ}+\overrightarrow{EB}+\overrightarrow{MC}\)
Mệnh đề đúng là:
A. Chỉ (I) B.Chỉ (III) C.(I) và (II) D.Chỉ (II)
Cho hình bình hành \(ABCD\) tâm \(O\). Hai điểm \(M\) và \(N\) lần lượt là hai điểm di động trên hai đường thẳng \(AB,AD\) sao cho \(M,C,N\) thẳng hàng. Đặt \(\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AD}\left(x,y\ne0\right)\), tìm biểu thức \(A\) thỏa mãn phương trình \(x+y=A.\)
cho hình bình hành ABCD tập hợp các điểm M thỏa mãn \(\overrightarrow{|MA}+\overrightarrow{MB}|=|\overrightarrow{MC}+\overrightarrow{MD}|\)
Cho hình thang ABCD vuông tại A và D có DC=3a, AB=a
Tính độ dài đường cao AD theo a để AC vuông góc vs BD.Khi đó hãy tính \(\overrightarrow{AM}.\overrightarrow{DN}\) với M,N lần lượt là trug diểm của BC và BD