b/ Chứng tỏ EDFH là hbh :
Ta có: EH vuông với BF , DF vuông với BF => EH // DF (1)
FH vuông với BE , DE vuông với BE => FH // DE (2)
Từ (1) + (2) => EDFH là hbh
b/ Chứng tỏ EDFH là hbh :
Ta có: EH vuông với BF , DF vuông với BF => EH // DF (1)
FH vuông với BE , DE vuông với BE => FH // DE (2)
Từ (1) + (2) => EDFH là hbh
Cho hình chữ nhật ABCD, có AB=8cm, BC=6cm, và hai đường chéo cắt nhau tại O, qua B kẻ đường thẳng a vuông góc với BD, a cắt DC tại E
a) cm tam giác BCE và tam giác DBE đồng dạng
b) kẻ đường caoCH của tam giác BCE , chứng minh BC2 = CH.BD
c) tính tỉ số diện tích của tam giác CEH và diện tích tam giác DEB
d)chứng minh ba đường OE,BC,DH cắt nhau tại 1 điểm
Cho tam giác ABC vuông tại A, với AC<AB;AH là đường cao kẻ từ A.Các tiếp tuyến tại A và B với đ/tròn tâm O ngoại tiếp tam giác ABC cắt nhau tại M.Đoạn MO cắt AB tại E.Đoạn MC cắt đường cao AH tại F.Kéo dài CA cắt BM ở D.Đường thẳng BF cắt đường thẳng AM tại N.
a)C/M: OM//CD và M là trung điểm của BD
b)C/M: EF//BC
c)C/M: HA là tia p/g của góc MHN
d)Cho OM=BC=4cm.Tính chu vi tam giác ABC
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Đường phân giác của góc ABC cắt cạnh AC tại D . Từ C kẻ CE vuông góc với BD tại E.
Cho tam giác ABC, các đường phân giác của các góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC.
a) Có nhận xét gì về độ dài EH, EG, EK ?
b) Chứng minh AE là tia phân giác góc BAC.
c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CE tại D và F. Chứng minh EA vuông góc với DF.
d) Các đường thẳng EA, FB, DC là các đường gì trong tam giác DEF ?
1. Từ A ngoài đường tròn tâm O. Kẻ 2 tia tiếp tuyến AM , AN. Biết góc MAN = a độ ( không đổi ). Từ I bất kì trên cung nhỏ MN, vẽ tiếp tuyến cắt AM , AN tại B và C. OB và OC cắt đường tròn O tại D và E. CM : Cung DE không đổi khi I chạy trên cung MN
2. Cho đường tròn O và O' cắt nhau tại A và B. Qua A kẻ đường thẳng vuông góc với AB cắt đường tròn O tại C, cắt đường tròn O' tại D. Tia CB cắt đường tròn O' tại F , tia DB cắt đường tròn O tại E. CM : AB là tia phân giác góc EAF
3. Cho tam giác ABC nhọn. Điểm I bất kì trong tam giác. Kẻ IH vuông góc AB , IK vuông góc AC , IL vuông góc AB. Tìm vị trí điểm I sao cho : AL^2 + BH^2 + CK^2 đạt gtnn
1.Trên mp có 11 đường thẳng đôi 1 ko song song C/m:có 2 đường thẳng tạo với nhau 1 góc <17 độ
2.Cho (O) đường kính AB.Lấy C ngoài đoạn thẳng AB (C nằm trên đường thẳng AB).Kẻ 2 tiếp tuyến CE và CF. AB cắt EF tại I, kẻ cát tuyến CMN. C/m: góc AIM= góc BIN
3.Cho tam giác ABC ngoại tiếp đường tròn (O).Biết D,E,F là các tiếp điểm , D thuộc AC, E thuộc AB, F thuộc BC Biết OE=r, AB=c, AC=b, BC=a
C/m:a) (a+b+c)*r=2S ( S là diện tích tam giác ABC)
b)nếu (a+b+c)(a+b-c)=4S thì tam giác ABC vuông
Cho tam giác ABC, các đường phân giác của các góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, AB, AC.
a) Có nhận xét gì về độ dài EH, EG, EK ?
b) Chứng minh AE là tia phân giác góc BAC.
c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CE tại D và F. Chứng minh EA vuông góc với DF.
d) Các đường thẳng EA, FB, DC là các đường gì trong tam giác DEF ?
cho tam giác ABC nhọn(AB<AC) nội tiếp (O;R) , các đường cao AD,BE,CF cắt nhau tại H. Vẽ Ax lầ tiếp tuyến của (O). Tia Ax nằm trên nửa mặt phẳng bờ AB có chứa đỉnh C. Gọi K là giao điểm của 2 đường thẳng EF và BC, đường thẳng đi qua F và song song vs AC cắt AK và AD lần lượt tại M,N. Chứng minh MF=NF
Cho tam giác ABC vuông tại A có AB= 9cm ; BC=10cm
a. Tính AC và so sánh các góc tam giác ABC
b. Trên tia đối tia AB lấy điểm D sao cho A là trung điểm BD. Chứng minh tam giác BCD cân
c. Gọi E; F lần lượt là trung điểm các cạnh DC, BC. Đường thẳng BE cắt cạnh AC tại M.
Tính CM và chứng minh 3 điểm D; M; F thẳng hàng