Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Xuân Trà

 

Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Đường phân giác của góc ABC cắt cạnh AC tại D . Từ C kẻ CE vuông góc với BD tại E.
b. Cm tam giác ABD đồng dạng với tam giác EBC . Từ đó suy ra BD.EC = AD.BC
c. Cm \frac{CD}{BC} = \frac{CE}{BE}
d. Gọi EH là đường cao của tam giác EBC . Cm : CH.CB = ED.EB
Nguyen Thi Trinh
15 tháng 5 2017 lúc 12:06

b/

Xét \(\Delta ABD\)\(\Delta EBC\) có:

\(\widehat{A}=\widehat{E}=90^o\) ( vì \(\Delta ABC\) vuông tại A và \(CE\perp BD\) tại E)

\(\widehat{ABD}=\widehat{EBC}\) ( vì BD là tia phân giác của \(\widehat{ABC}\) )

\(\Rightarrow\Delta ABD~\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AD}{EC}\) ( 2 cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow BD.EC=BC.AD\)

c/ Vì \(\Delta ABD~\Delta EBC\left(cmt\right)\)

\(\Rightarrow\widehat{ADB}=\widehat{ECB}\)

\(\widehat{ADB}=\widehat{EDC}\) ( 2 góc đối đỉnh)

\(\Rightarrow\widehat{EDC}=\widehat{ECB}\)

Xét \(\Delta ECD\)\(\Delta EBC\) có:

\(\widehat{E}\) là góc chung

\(\widehat{EDC}=\widehat{ECB}\left(cmt\right)\)

\(\Rightarrow\Delta ECD~\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{EC}{EB}=\dfrac{CD}{BC}\) ( 2 cặp cạnh tương ứng tỉ lệ)

d/ Xét \(\Delta EBC\) vuông tại E, đường cao EH ứng với cạnh BC

Áp dụng hệ thức lượng trong tam giác vuông ta có:

\(EC^2=CH.CB\) (3)

\(\Delta ECD~\Delta EBC\left(cmt\right)\)

\(\Rightarrow\dfrac{ED}{EC}=\dfrac{EC}{EB}\) ( 2 cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow EC.EC=ED.EB\)

\(\Leftrightarrow EC^2=ED.EB\left(4\right)\)

Từ (3) và (4) \(\Rightarrow CH.CB=ED.EB\)


Các câu hỏi tương tự
Đỗ Hoàng Ngọc
Xem chi tiết
phambaoanh
Xem chi tiết
Charlotte Yun Amemiya
Xem chi tiết
Quang Minh Trần
Xem chi tiết
Charlotte Yun Amemiya
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
cong chua gia bang
Xem chi tiết
cong chua gia bang
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết