Cho hình chữ nhật ABCD, có AB=8cm, BC=6cm, và hai đường chéo cắt nhau tại O, qua B kẻ đường thẳng a vuông góc với BD, a cắt DC tại E
a) cm tam giác BCE và tam giác DBE đồng dạng
b) kẻ đường caoCH của tam giác BCE , chứng minh BC2 = CH.BD
c) tính tỉ số diện tích của tam giác CEH và diện tích tam giác DEB
d)chứng minh ba đường OE,BC,DH cắt nhau tại 1 điểm
a)xét tam giác BCE và tam giác DCE có:
\(\widehat{DBE}=\widehat{BCE}=90^o\)
\(\widehat{BEC}:chung\)
nên tam giác BCE ~ tam giác DBE(g-g)
vì \(\Delta BCE\) ~ \(\Delta DBE\)
nên \(\widehat{CBH}=\widehat{BDC}\)
đồng thời: \(\widehat{CHB}=\widehat{DCB}=90^o\)
do đó tam giác BCH ~ DBC (g-g)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{BC}{CH}\) hay \(BC^2=CH.BD\)
a,Xét tam giác BDE và tam giác DCE có:
+)chung góc E
+)góc BDE=DCE=90độ
suy ra tam giác BDE đồng dạng tam giác DCE(g-g)
b,Xét tam giác CHD và tam giác DCB có:
+)góc DCH=góc BDC
+)góc DHC=góc BCD
suy ra tam giác CHD đồng dạng tam giác DCB
c,Do BD vuông DE và HC vuông DE
=>BD//HC
=>CK/OB=EK/EO=HK/OD(bn suy ra từ ta-lét)
Mà OB=OD =>CK=HK=>K là trung điểm của CH.
Tỉ số bn dựa vào phần a,b
d,Gọi F là giao điểm của KF và DC(Bây h mình k vt hẳn chữ góc ra nx)
Vì HC//BD nên:
=>HCBD là hình thang
=>BH và DC là 2 đường chéo cắt nhau tại F(*)
Xét tam giác OFD và tam giác KFC,có:
+) ECK= ODF(do BD//CH)
+)DÒF=CKE(Do OD//KC và 2 góc ở vị trí sole trong)
Suy ra tam giác OFD đồng dạng tam giác KFC(g-g)
=>OFD=KFC mà 2 góc ở vị trí đối đỉnh nên
=> DC cắt OK tại F
=>BOK+OKC=180độ(2 góc trong cùng phía)
mà BOK=OKC(do KC//BO) mà 2 góc ở vị trí đồng vị nên
=>CKE+OKC=180 độ
=>O;K;E thẳng hàng mà DC cắt OK tại F nên
=>DC cắt OF tại F(**)
từ (*) và (**) suy ra:
OE;CD;BH thẳng hàng.
{Tích mink nha :) }