a, Phương trình hoành độ giao điểm của (P) và (d) là
\(x^2=\)-ax + a +2
\(\Leftrightarrow x^2+ax-a-2=0\) (1)
Có:
\(\Delta=a^2-4\left(-a-2\right)\\
=a^2+4a+8\\ =\left(a+2\right)^2+4>0\)
=> Pt (1) luôn có 2 nghiệm phân biệt \(x_1;x_2\) với mọi a .
=> (d) luôn cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1;x_2\) khi a thay đổi.
b, Vì pt (1) luôn có 2 nghiệm phân biệt \(x_1;x_2\) nên theo định lí Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=-a-2\end{matrix}\right.\)
Theo yêu cầu bài toán:
\(\left|x_1-x_2\right|=\sqrt{29}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=29\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=29\)
\(\Leftrightarrow\left(-a\right)^2-4\left(-a-2\right)=29\)
\(\Leftrightarrow a^2+4a-21=0\)
Bạn tự giải nốt nhé.