a: \(y=-\dfrac{1}{3}x^3+2x^2+\left(2m+1\right)x-3m+2\)
=>\(y'=-\dfrac{1}{3}\cdot3x^2+2\cdot2x+\left(2m+1\right)=-x^2+4x+\left(2m+1\right)\)
Để y'<=0 với mọi x thì
\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(4^2-4\cdot\left(-1\right)\left(2m+1\right)< =0\)
=>16+4(2m+1)<=0
=>4(2m+1)<=-16
=>2m+1<=-4
=>2m<=-5
=>\(m< =-\dfrac{5}{2}\)
b: \(y=\dfrac{1}{3}x^3+mx^2-mx+1\)
=>\(y'=\dfrac{1}{3}\cdot3x^2+m\cdot2x-m=x^2+2m\cdot x-m\)
Để y'>=0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left(2m\right)^2-4\cdot1\cdot\left(-m\right)< =0\)
=>\(4m^2+4m< =0\)
=>m(m+1)<=0
=>-1<=m<=0