Cho f(x) là hàm số bậc 4 thỏa mãn \(f\left(0\right)=\dfrac{-1}{\ln2}\). Hàm số \(f'\left(x\right)\) có bảng biến thiên như sau:
Hàm số \(g\left(x\right)=\left|f\left(-x^2\right)-x^2+\dfrac{2^{x^2}}{\ln2}\right|\) có bao nhiêu điểm cực trị?
A. 3
B.2
C.4
D.5
Cho hàm số \(y=f\left(x\right)\) là hàm số bậc bốn thỏa mãn \(f\left(0\right)=0\) .Hàm số \(y=f'\left(x\right)\) có bảng biến thiên như sau:
Hàm số \(g\left(x\right)=\left|f\left(x^2\right)-x^2\right|\) có bao nhiêu điểm cực trị?
A.1
B.3
C.5
D.7
Câu 48: Cho hàm số y=f(x) có đạo hàm liên tục trên R và \(f'\left(x\right)=x\left(2x-1\right)\left(x^2+3\right)+2\). Hàm số \(y=f\left(3-x\right)+2x+2023\) đồng biến trên khoảng nào trong các khoảng sau?
A: \(\left(-\infty;3\right)\)
B: (3;5)
C: (2;5/2)
D: (5/2;3)
Câu 50: Cho hàm số y=f(x) có đạo hàm \(f'\left(x\right)=\left(x-1\right)^2\cdot\left(x^2-2x\right)\) với \(\forall x\in R\). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(f\left(x^2-8x+m\right)\) có 5 điểm cực trị?
Cho hàm số \(f\left(x\right)\) có đạo hàm bằng \(f'\left(x\right)=x^2\left(x-1\right)^3\left(x-2\right)\) . Số điểm cực trị của hàm số \(f\left(x\right)\) bằng:
A.0 B.1 C.2 D.3
Cho hàm số y=f(x) xác định và liên tục trên R thõa mãn các điều kiện sau:
\(\hept{\begin{cases}f\left(x\right)>0,\forall x\in R\\f'\left(x\right)=-e^xf^2\left(x\right),\forall x\in R\\f\left(o\right)=\frac{1}{2}\end{cases}}\)
Hãy tính \(f\left(ln2\right)\).
Cho hàm số \(y=f\left(x\right)\)không âm có đạo hàm trên \(\left[0;\frac{\pi}{4}\right]\)thỏa mãn \(f\left(x\right)=\frac{f'\left(x\right)}{cosx}\).Biết \(f\left(0\right)=1\).giá trị của \(f\left(\frac{\pi}{4}\right)?\)(Đáp án:\(e^{\frac{\sqrt{2}}{2}}\))
Có bao nhiêu giá trị nguyên của tham số m \(\in\left(-20;20\right)\) để hàm số y = \(\dfrac{x-1}{x-m}\) nghịch biến trên khoảng \(\left(-\infty;2\right)\)
Cho hàm số \(y=f\left(x\right)\). Hàm số y = f(x)' có đồ thị như hình vẽ. hàm số g(x) = f(\(x^{^{ }3}+1\)) nghịch biến trên khoảng? (*Note: mọi người chỉ mình cách để chèn hình tốt hơn được không ạ, mình cảm ơn)
Cho hàm số f(x) có đạo hàm liên tục trên R. Biết f(3) = 1 và \(\int\limits^1_0xf\left(3x\right)dx=1\) , khi đó \(\int_0^3x^2f'\left(x\right)dx\)
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3