Lời giải:
Sửa đề theo yêu cầu: \(\overrightarrow{IM}.\overrightarrow{IA}=R^2\)
----------------------
Ta có:
\(\overrightarrow{IM}.\overrightarrow{IA}=R^2\)
\(\Leftrightarrow (\overrightarrow{IA}+\overrightarrow{AM})\overrightarrow{IA}=R^2\)
\(\Leftrightarrow (\overrightarrow{IA})^2+\overrightarrow{AM}.\overrightarrow{IA}=R^2\)
\(\Leftrightarrow R^2+\overrightarrow{AM}.\overrightarrow{IA}=R^2\)
\(\Rightarrow \overrightarrow{AM}.\overrightarrow{IA}=0\). Vậy tích vô hướng của \(\overrightarrow{AM}; \overrightarrow{IA}\) bằng $0$,
nghĩa là \(\overrightarrow{AM}\perp \overrightarrow{IA}\)
Do đó $MA$ là tiếp tuyến của $(I)$
Bạn xem lại đề
\(IM.IA=R^2\). Mà \(IA=R\) (do $I$ là tâm và $A$ nằm trên đường tròn)
\(\Rightarrow IM=R\)
\(\Rightarrow M\in (I)\)
Khi đó $MA$ là dây cung của $(I)$ chứ không thể là tiếp tuyến.