\(\Leftrightarrow sinA=2sinB.cosC\)
\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)
Vậy tam giác ABC cân tại A
\(\Leftrightarrow sinA=2sinB.cosC\)
\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)
Vậy tam giác ABC cân tại A
Cho tam giác ABC. Chứng minh rằng:
Nếu \(\dfrac{b^2-a^2}{2c}=bcosA-acosB\) thì tam giác ABC cân tại C.
Cho tam giác ABC. Đẳng thức nào sai?
A. sin(A+B-2C)= sin3C B. cos\(\frac{B+C}{2}\)= sin\(\frac{A}{2}\)
C. sin(A+B)= sinC D. cos\(\frac{A+B+2C}{2}\)= sin\(\frac{C}{2}\)
Nhận dạng tam giác ABC biết
\(\dfrac{1+\cos B}{\sin B}=\dfrac{2a+c}{\sqrt{4a^2-c^2}}\)
Cho tam giác ABC có BC = a, AC = b, AB = c, đường phân giác trong ứng với góc A là la. Chứng minh: \(l_a=\dfrac{2bc.\cos\dfrac{A}{2}}{b+c}\)
Cho tam giác ABC thỏa mãn điêuk kiện \(2\cos A\left(\sin B-\sin C\right)=\sin2C-\sin2B\)
Tam giác ABC là tam giác vuông hay tam giác cân
Cho ΔABC, CMR: \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}\le\dfrac{3}{2}\).
Cho tam giác ABC có ba cạnh a,b,c. Chứng minh rằng:
\(\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)
Cho tam giác ABC có diện tích là S và bán kính đường tròn ngoại tiếp R thỏa mãn hệ thức
\(S=\frac{2}{3}R^3\left(\sin^3A+\sin^3B+\sin^3C\right)\) Chứng minh tam giác ABC đều
Chung minh. 1-cos2x/1+cos2x=tan^2x
Bien doi thanh tich
a, A= sina +sinb+sin(a+b)
b, B=cosa +cosb +cos(a+b)+1
c, C= 1 + sina + cosa
d. D = sinx + sin3x +sin5x+sin7x
Chứng minh
a, sinx*sin(pi/3-x)*sin(pi/3+x)=1/4sin3x
b, cosx*cos(pi/3-x)*cos(pi/3+x)=1/4cos3x
c, cos5x*cos3x+sin7x*sinx=cos2x *cos4x
d, sin5x -2sinx(cos2x+cos4x)=sinx