\(1=\dfrac{1\left(1+1\right)}{2}=1;3=\dfrac{2.\left(2+1\right)}{2};6=\dfrac{3.\left(3+1\right)}{2}\)Vậy số hạng trong ãy có dạng :
\(\dfrac{n\left(n+1\right)}{2}\)
Tổng hai số hạng liên tiếp của dãy:
\(\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}=\dfrac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\dfrac{\left(n+1\right)\left(2+2n\right)}{2}=\dfrac{\left(n+1\right)\left(n+1\right)2}{2}=\left(n+1\right)^2\)\(\Rightarrowđpcm\)