\(a_1=1\)
\(a_2=3=1+2\)
\(a_3=6=1+2+3\)
\(a_4=1+2+3+4\)
\(a_5=15=1+2+3+4+5\)
.............................................
\(a_{100}=1+2+3+...+100=\dfrac{100\left(100+1\right)}{2}=5050\)\(a_n=1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
a1=1!=1
a2=2!=3
a3=3!=6
................
a100=100! =5050
an=n!