Ủa m đâu bạn? và làm gì có điểm K nào ở đây?
Ủa m đâu bạn? và làm gì có điểm K nào ở đây?
Cho \(\Delta ABC\) có E, I lần lượt là trung điểm của BC và AB. Gọi D, J, K là các điểm thõa mãn \(\overrightarrow{BE}=2\overrightarrow{BD}\), \(\overrightarrow{AJ}=\frac{1}{2}\overrightarrow{JC}\), \(\overrightarrow{IK}=m\overrightarrow{IJ}\).
Tìm m để A, K, D thẳng hàng.
Bài 1: Cho 4 điểm A, B,C,D bất kì. Gọi M,N lần lượt là trung điểm của AC và BD. Chứng minh rằng \(\overrightarrow{AB}\) +\(\overrightarrow{CD}\) = 2\(\overrightarrow{MN}\)
Bài 2: Cho 4 điểm A, B,C,D bất kì và M,N lần lượt là trung điểm của AB và CD. G là trung điểm MN. Chứng minh rằng:
a, \(\overrightarrow{GA}\) +\(\overrightarrow{GB}\) +\(\overrightarrow{GC}\) + \(\overrightarrow{GD}\) = \(\overrightarrow{0}\)
b, Với mọi điểm O ta đều có: \(\overrightarrow{OA}\)+\(\overrightarrow{OB}\)+\(\overrightarrow{OC}\)+\(\overrightarrow{OD}\)= 4\(\overrightarrow{OG}\)
Bài 3: Cho ngũ giác ABCDE. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD,DE. Gọi I,J lần lượt là trung điểm của MP và NQ. Chứng minh rằng \(\overrightarrow{IJ}\)= \(\overset{1}{4}\) \(\overrightarrow{AE}\)
cho tam giác ABC có D,E,F lần lượt là trung điểm của BC , CA, AB. Gọi M là trung điểm của AD . Chứng minh
a, \(2\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
b, \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=4\overrightarrow{OM}\)( O tùy ý)
c, \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}\)
Cho tam giác đều ABC, tâm O. M là một điểm bất kì trong tam giác. Hình chiếu vuông góc của M xuống 3 cạnh của tam giác là D, E, F. Từ M kẻ ba đường thẳng song song với 3 cạnh của tam giác. Các giao điểm với các cạnh lần lượt là: I, J, K, L, P, Q (D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ). Vì sao ta có:
\(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\); \(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\);\(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)?
Tam giác ABC, trọng tâm G. M, N là trung điểm AB, BC. I, J sao cho \(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\) và \(\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M, N, J thẳng hàng
b) J là trung điểm BI
Câu 1: Cho hình vuông ABCD có cạnh bằng 1. Gọi O là giao điểm 2 đường chéo AC, BD. Tìm khẳng định sai:
A. \(\overrightarrow{AB}.\overrightarrow{BC}=0\)
B.\(\overrightarrow{BC}.\overrightarrow{BD}=1\)
C.\(\overrightarrow{OD}.\overrightarrow{OB}=-\frac{1}{2}\)
D. \(\overrightarrow{AB}.\overrightarrow{AC}=\sqrt{2}\)
Câu 2: Cho tam giác ABC có M là trung điểm BC, N là trung điểm của BM. Đẳng thức nào sau đây đúng?
A. \(4\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}
\)
B, \(2\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}\)
C.\(4\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{3AC}\)
D.\(4\overrightarrow{AN}=3\overrightarrow{AB}+2\overrightarrow{AC}\)
Cho tam giác ABC.Các điểm D,E,G được xác định bởi hệ thức :\(2\overrightarrow{AD}=\overrightarrow{AB},\overrightarrow{AE}=2\overrightarrow{CE},2\overrightarrow{GD}=\overrightarrow{GC}\)
a, Chứng minh BE//CD.
Gọi M là trung điểm của BC.Chúng minh A,G,M thẳng hàng.
Câu 1: cho hình chữ nhật ABCD và I là giao điểm của 2 đường chéo. Tập hợp các điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MD}\right|\) là
A. trung trực của đoạn thẳng AB
B. trung trực của đoạn thẳng AD
C. đường tròn tâm I, bán kính \(\dfrac{AC}{2}\)
D. đường tròn tâm I, bán kính \(\dfrac{AB+BC}{2}\)
Câu 2: cho 2 điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\) là
A. đường trung trực của đoạn thẳng AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
Cho tam giác ABC có G là trọng tâm. Lấy I,Jsao cho:\(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0},2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M,N là trung diêm AB,BC. CM: M,N,J thẳng hàng