Đặt \(\left(BC;CA;AB\right)=\left(a;b;c\right)\)
Kẻ hai trung tuyến AM, CN cắt nhau tại G
\(AG^2=\dfrac{4}{9}AM^2=\dfrac{1}{9}\left(2b^2+2c^2-a^2\right)\)
\(BG^2=\dfrac{4}{9}BN^2=\dfrac{1}{9}\left(2a^2+2c^2-b^2\right)\)
Pitago tam giác vuông ABG:
\(AG^2+BG^2=AB^2\Leftrightarrow\dfrac{1}{9}\left(2b^2+2c^2-a^2+2a^2+2c^2-b^2\right)=c^2\)
\(\Leftrightarrow a^2+b^2=5c^2\Leftrightarrow5=\dfrac{a^2+b^2}{c^2}\ge\dfrac{\left(a+b\right)^2}{2c^2}\)
\(\Rightarrow S=\dfrac{a+b}{c}\le\sqrt{10}\)