Ta thấy d1 // d2 do chúng có cùng vecto pháp tuyến là
\(\overrightarrow{n}=\left(2;3\right)\)
d đối xứng với d1 qua d2 ⇒ d // d1 // d2 (1)
và d đi qua đầu mút còn lại của một đoạn thẳng có một đầu mút nằm trên d1 và trung điểm của đoạn thẳng ấy nằm trên d2 (2)
(1) ⇒ d có vecto pháp tuyến là \(\overrightarrow{n}=\left(2;3\right)\)
Gọi M (1; 1) ∈ d1 và N (1; -1) ∈ d2. Gọi giao điểm của MN với d là P
Từ (2) ⇒ N là trung điểm của MP
⇒ P(1; -3)
Vậy d đi qua P(1; -3) và có vecto pháp tuyến là \(\overrightarrow{n}=\left(2;3\right)\)
⇒ Phương trình của d là : 2 (x - 1) + 3 (y + 3) = 0
hay 2x + 3y + 7 = 0