Giả sử phương trình tiếp tuyến có dạng:ax+by+c=0(a2+b2>0)
Từ gt =>(C1) có tâm O1(2;4) và bán kính 3 và (C2) có tâm O2(1;1) và bán kính 2.
khoảng cách từ O1 đến tiếp tuyến là:\(\frac{\left|2a+4b+c\right|}{\sqrt{a^2+b^2}}=3\left(1\right)\)
Tương tự ta có:\(\frac{\left|a+b+c\right|}{\sqrt{a^2+b^2}}=2\left(2\right)\)
Từ (1) và (2) =>2|2a+4b+c|=3|a+b+c|=>\(\left[{}\begin{matrix}c=a+5b\\c=\frac{-7a-11b}{5}\end{matrix}\right.\)
Thay vào (1) hoặc (2) ta có thể viết được a theo b hoặc b theo a rồi suy ra phương trình tương ứng