Lời giải:
\(A=2(9^{2009}+9^{2008}+....+9+1)\)
\(9A=2(9^{2010}+9^{2009}+...+9^2+9)\)
Trừ theo vế:
\(8A=2(9^{2010}-1)\Rightarrow A=\frac{9^{2010}-1}{4}=\frac{(9^{1005}-1)(9^{1005}+1)}{4}\)
\(=\frac{9^{1005}-1}{2}.\frac{9^{1005}+1}{2}\)
Thấy rằng \(9^{1005}-1\vdots 9-1\vdots 2\Rightarrow \frac{9^{1005}-1}{2}\in\mathbb{N}\); \(9^{1005}+1\vdots 9+1\vdots 2\Rightarrow \frac{9^{1005}+1}{2}\in\mathbb{N}\)
Mà \(\frac{9^{1005}+1}{2}-\frac{9^{1005}-1}{2}=1\) nên đây là 2 số tự nhiên liên tiếp.
Do đó $A$ là tích của 2 số tự nhiên liên tiếp (đpcm)