\(\dfrac{a}{c}=\dfrac{a^2+b^2}{b^2+c^2}\)
\(VP=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}=VT\left(đpcm\right)\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
Ta có: \(\dfrac{a^2+a.c}{a.c+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\left(đpcm\right)\)