Xét \(\left(a^2+b^2\right).C-\left(b^2+c^2\right).a=a^2c+b^2a\)=\(b^2a-c^2a=a^2c+ac.c-ac.a=0\)
(thay \(b^2=ac\))
\(\Rightarrow\left(a^2+b^2\right).c=\left(b^2+c^2\right).a\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Xét \(\left(a^2+b^2\right).C-\left(b^2+c^2\right).a=a^2c+b^2a\)=\(b^2a-c^2a=a^2c+ac.c-ac.a=0\)
(thay \(b^2=ac\))
\(\Rightarrow\left(a^2+b^2\right).c=\left(b^2+c^2\right).a\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng
Với a2=b.c thì \(\dfrac{a+b}{a-b}+\dfrac{c+a}{c-a}\)
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)chứng minh rằng \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
cho \(\dfrac{a^2+b^2}{c^2+d^2}\)= \(\dfrac{ab}{cd}\).Chứng minh rằng: hoặc \(\dfrac{a}{b}\)= \(\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}\)= \(\dfrac{d}{c}\)
Cho tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a.d}{c.d}=\dfrac{a^2-b^2}{b^2-d^2}\)và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng: \(\text{}\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\) (giả thiết các tỉ số đều có nghĩa)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) . Chứng minh rằng : \(\dfrac{a^2}{b^2}\) = \(\dfrac{c^2}{d^2}\) = \(\dfrac{ac}{bd}\)
Các bạn nhớ giải nhanh giúp mình nhé !
Ai làm nhanh nhất sẽ được tick 5 sao!!!
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\).
Giải chi tiết dùm mình với ạ.
Cho b2 = ac. Chứng minh: \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)