Có \(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc\) => a2 = ad => a=d
Xét \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
<=> (a+b)(c-a) = (a-b)(c+a)
<=> (a+b)(c-d) = (a-b)(c+d)
<=> ac - ad + bc - bd = ac + ad -bc -bd
<=> 2bc = 2ad (luôn đúng) => đpcm
Có \(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc\) => a2 = ad => a=d
Xét \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
<=> (a+b)(c-a) = (a-b)(c+a)
<=> (a+b)(c-d) = (a-b)(c+d)
<=> ac - ad + bc - bd = ac + ad -bc -bd
<=> 2bc = 2ad (luôn đúng) => đpcm
cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng
với \(b^2\)=ac thì \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
cho đẳng thức a.d=b.c tỉ lệ thức nào sau đây sai ( a, b , c , d khác 0 ) :
A \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) B \(\dfrac{d}{b}\) = \(\dfrac{c}{a}\) C \(\dfrac{b}{d}\) = \(\dfrac{c}{a}\) D \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
giúp mình đi nha mn =(
Chứng minh từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì ta suy ra được các tỉ lệ thức sau:\(\dfrac{a+b}{b}\)=\(\dfrac{c+d}{d}\);\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) và\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\).
cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng
a) \(\dfrac{a}{b}\)=\(\dfrac{a+c}{b+d}\)
b) \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)
Cho a+b+c = a2+b2+c2=1 và \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{z}{c}\) và ( a,b,c ≠ 0 )
Hãy chứng minh (x+y+z)2=x2+y2+z2
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng
\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)chứng minh rằng : \(\dfrac{a^3}{b^3}=\dfrac{a}{d}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)