Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
My Trần

Cho a,b,c là ba cạnh của tam giác . Chứng minh bất đẳng thức :

   \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\).

    

Trần Việt Linh
19 tháng 10 2016 lúc 9:43

Đặt: \(b+c-a=x;c+a-y=y;a+b-c=z\)

=> \(2a=y+z;2b=x+z;2c=x+y\)

T có:

\(\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\)

Áp dụng bđt cô si cho 2 số dương ta có:

\(\frac{y}{z}+\frac{x}{y}\ge2;\frac{z}{x}+\frac{x}{z}\ge2;\frac{z}{y}+\frac{y}{z}\ge2\)

=>\(2\left(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\right)\ge6\)

=>\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

Võ Đông Anh Tuấn
19 tháng 10 2016 lúc 9:46

Đặt \(\begin{cases}b+c-a=x\\c+a-b=y\\a+b-c=z\end{cases}\Rightarrow\begin{cases}y+z=2a\Rightarrow a=\frac{y+z}{2}\\x+z=2b\Rightarrow b=\frac{x+z}{2}\\x+y=2c\Rightarrow c=\frac{x+y}{2}\end{cases}\)

Vì \(x;y;z>0\) vì \(a,b,c\) là các cạnh của tam giác nên \(\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)

Vế trái cho ta :

\(\frac{1}{2}\left(\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\right]\)

                              \(\ge\frac{1}{2}\left(2.\frac{x}{y}.\frac{y}{x}+2.\frac{z}{x}.\frac{x}{z}+2.\frac{y}{z}.\frac{z}{x}\right)\)

                              \(\ge\frac{1}{2}.6=3\)

Vậy \(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\). ( ĐPCM ) 

 

 

 


Các câu hỏi tương tự
Đặng Minh ĐỨC
Xem chi tiết
Chau Kòi
Xem chi tiết
Kiên Là Tôi
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Quốc Bảo
Xem chi tiết
Quốc Bảo
Xem chi tiết
Nguyễn Châu
Xem chi tiết
Quốc Bảo
Xem chi tiết
Lemon Candy
Xem chi tiết