Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phan thị minh anh

cho a,b,c là 3 số thực dương , tìm min của bt \(P=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}\)

o O o Tiểu Thư Dễ Thương...
7 tháng 10 2016 lúc 20:18

@NTMH

Lightning Farron
15 tháng 2 2017 lúc 18:39

Ta chứng minh \(P\ge\frac{9}{2}\). Ta đã có: \(\frac{a^3+b^3+c^3}{2abc}\ge\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy cần chứng minh \(\frac{a^{2}+b^{2}}{c^{2}+ab}+\frac{b^{2}+c^{2}} {a^{2}+bc}+\frac{c^{2}+a^{2}}{b^{2}+ac}\geq 3\)

\(\Leftrightarrow a^{2}(\frac{1}{c^{2}+ab}+\frac{1}{b^{2}+ac)}+b^{2}(\frac{1}{c^{2}+ab}+\frac{1}{a^{2}+bc})+c^{2}( \frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ac})\)

\(\geq \frac{4a^{2}}{(a+b)(b+c)}+\frac{4b^{2}}{(c+a)(c+b) }+\frac{4c^{2}}{(a+b)(a+c)}\)

\(\geq \frac{4(a+b+c)^{2}}{(a+b)(b+c)+(c+a)(c+b)+(a+c)(a+ b)}\geq 3\)

BĐT đã được chứng minh

Vậy ta có \(P_{min}=\frac{9}{2}\) khi \(a=b=c\)


Các câu hỏi tương tự
Quách Phú Đạt
Xem chi tiết
Neet
Xem chi tiết
Ngô Thị Ngọc Hân
Xem chi tiết
Neet
Xem chi tiết
Neet
Xem chi tiết
Quốc Bảo
Xem chi tiết
Phú Nguyễn
Xem chi tiết
Neet
Xem chi tiết
Quốc Bảo
Xem chi tiết