\(\dfrac{a^2}{a^2+2}+\dfrac{b^2}{b^2+2}+\dfrac{c^2}{c^2+2}=\dfrac{a^2+2-2}{a^2+2}+\dfrac{b^2+2-2}{b^2+2}+\dfrac{c^2+2-2}{c^2+2}\)
\(=3-2\left(\dfrac{1}{a^2+2}+\dfrac{1}{b^2+2}+\dfrac{1}{c^2+2}\right)=3-2=1\)
Từ đó:
\(1=\dfrac{a^2}{a^2+2}+\dfrac{b^2}{b^2+2}+\dfrac{c^2}{c^2+2}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)
\(\Rightarrow a^2+b^2+c^2+6\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le3\) (đpcm)