Ta co:
\(VT=\Sigma_{cyc}\frac{a}{ca+1}=\Sigma_{cyc}\frac{a}{ca+abc}=\Sigma_{cyc}\frac{1}{c+bc}\)
Xet
\(\Sigma_{cyc}\frac{1}{c+bc}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{c}+\frac{1}{bc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{4}\left(ab+bc+ca+a+b+c\right)\)
bdt can chung minh thanh
\(ab+bc+ca+a+b+c\le2\left(a^2+b^2+c^2\right)\)
Ta lai co:
\(a^2+b^2+c^2\ge ab+bc+ca\)
Gio ta can chung minh:
\(a^2+b^2+c^2\ge a+b+c\)
Ta co hai danh gia:
\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(1=\sqrt[3]{abc}\le\frac{a+b+c}{3}\le\frac{\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\Rightarrow a^2+b^2+c^2\ge3\)
Suy ra can chung minh:
\(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2-3\right)\ge0\) (đúng)
Dau '=' xay ra khi \(a=b=c=1\)