Cho lục giác đều ABDEF , M bất kì . Khẳng định nào sao đây đúng?
\(A.\overrightarrow{MA}-\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}-\overrightarrow{MF}\)
B. \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}+\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)
C. \(\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)
D . \(\overrightarrow{MA}-\overrightarrow{MC}-\overrightarrow{ME}-\overrightarrow{MB}=\overrightarrow{MD}+\overrightarrow{MF}\)
Cho 4 điểm A, B, C, D phân biệt. Tìm vị trí điểm M sao cho: \(\overrightarrow{AM}=\overrightarrow{BC}-\overrightarrow{AD}\)
Câu 1:Cho hình vuông ABCD cạnh a.Tính \(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|\)?
Câu 2:Cho AM thỏa mãn \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}\) thì điểm M là gì?
Câu 3:Cho tam giác ABC,có bao nhiêu điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=5\)?
Câu 4:Cho tam giác ABC.Điểm M thỏa mãn \(\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}\) thì điểm M là gì?
Câu 5:Cho hình bình hành ABCD.Tập hợp tất cả các điểm M thỏa mãn đẳng thức \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{0}\) là:
A.một đường tròn
B.một đường thẳng
C.một điểm
D.một đoạn thẳng
Cho tam giác ABC có trọng tâm G, gọi I là trung điểm BC. Tìm tập hợp điểm M thỏa mãn: \(2\left|\overrightarrow{MC}+\overrightarrow{IA}-\overrightarrow{IM}-\overrightarrow{BM}\right|=3\left|\overrightarrow{AB}+\overrightarrow{MC}-\overrightarrow{AM}\right|\)
Cho tam giác đều ABC, cạnh a, trọng tâm G. I là trung điểm CG, J là trung điểm AB. Tập hợp các điểm M sao cho \(|\overrightarrow{MA}+\overrightarrow{MB}+4\overrightarrow{MC}|=6a\)
Cho tứ giác ABCD gọi M,I lần lượt là trung điểm AD và BC
a) CMR : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{DB}=\overrightarrow{2MI
}
\)
b) Gọi G là trung điểm MI. CMR : \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
c) Chứng minh với O bất kì ta có : \(\overrightarrow{OA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=4\overrightarrow{OG}\)
d) Gọi E là trọng tâm tam giác ABD CM: 3 điểm C,G,E thẳng hàng.
AI GIÚP MIK PHẦN C VÀ D VỚI Ạ MIK CÁM ƠN NHÌU!!!
cho hình vuông ABCD có tâm O và cạnh a. M là điểm bất kỳ
a, Tính |\(\overrightarrow{AB}+\overrightarrow{OD}\)| , \(\left|\overrightarrow{AB}-\overrightarrow{OC}+\overrightarrow{OD}\right|\)
b, Tính độ dài vecto \(\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}+\overrightarrow{MD}\)
Cho hình bình hành ABCD tâm O, M là một điểm bất kỳ. Chứng minh rằng :
1) \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
2) \(\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)
3) \(\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{AB}\)
4) \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}=2\overrightarrow{MO}\)
Câu 1:Cho 3 điểm A,B,C sao cho MA=MB=50 và \(\widehat{AMB}=60^0\),biết \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\).Tính độ dài MC
Câu 2:Cho hình thang ABCD có AB//CD.Cho AB=2a,CD=a.Gọi O là trung điểm của AD.Khi đó \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|\)=?