Câu 12
Cho 2 hàm sóng: \(\psi_{1s}=\frac{1}{\sqrt{\pi}}.a^{\frac{3}{2}}_0.e^{-\frac{r}{a_0}}\)và \(\psi_{2s}=\frac{1}{4\sqrt{2}}.a^{\frac{3}{2}}_0.\left(2-\frac{r}{a_0}\right).e^{-\frac{r}{2a_0}}\)
a) Hãy chứng minh hai hàm sóng trên trực giao nhau
b) Tìm hàm mật độ xác suất trong mỗi trường hợp và chỉ ra những vị trí mà mật độ xác suất đạt giá trị cực đại.
a, Ta có:
Hai hàm sóng trực giao nhau khi \(I=\int\psi_{1s}.\psi_{2s}d\psi=0\) \(\Leftrightarrow I=\iiint\psi_{1s}.\psi_{2s}dxdydz=0\)
Chuyển sang tọa độ cầu ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.\sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)
\(\Rightarrow\)\(I=\frac{a^3_o}{4.\sqrt{2.\pi}}\int\limits^{\infty}_0\left(2-\frac{r}{a_o}\right).e^{-\frac{3.r}{2.a_o}}.r^2.\sin\theta dr\int\limits^{2\pi}_0d\varphi\int\limits^{\pi}_0d\theta\)
\(=a^3_o.\sqrt{\frac{\pi}{2}}\)(.\(2.\int\limits^{\infty}_0r^2.e^{-\frac{3.r}{2.a_o}}dr-\frac{1}{a_o}.\int\limits^{\infty}_0r^3.e^{-\frac{3.r}{2.a_o}}dr\))
\(=a_o.\sqrt{\frac{\pi}{2}}.\left(2.I_1-\frac{1}{a_o}.I_2\right)\)
Tính \(I_1\):
Đặt \(r^2=u\); \(e^{-\frac{3r}{2a_o}}dr=dV\)
\(\Rightarrow\begin{cases}2.r.dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\) \(\Rightarrow I_1=-r^2.\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}+\frac{4.a_o}{3}.\int\limits^{\infty}_0r.e^{-\frac{3r}{2a_o}}dr\)\(=0+\frac{4a_o}{3}.I_{11}\)
Tính \(I_{11}\):
Đặt r=u; \(e^{-\frac{3r}{2a_o}}dr=dV\)\(\Rightarrow\begin{cases}dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)\(\Rightarrow I_{11}=0+\frac{2a_0}{3}.\int\limits^{\infty}_0e^{-\frac{3r}{2a_o}}dr=\frac{4a^2_o}{9}\)
\(\Rightarrow2.I_1=2.\frac{4a_o}{3}.\frac{4a_o^2}{9}=\frac{32a^3_o}{27}\)
Tính \(I_2\):
Đặt \(r^2=u;e^{-\frac{3r}{2a_o}}dr=dV\) \(\Rightarrow\)\(3r^2dr=du;-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\)
\(\Rightarrow I_2=0+2.a_o.\int\limits^{\infty}_0r^2.e^{-\frac{3r}{2a_o}}dr\)\(\Rightarrow\frac{1}{a_o}.I_2=2a_o.\frac{16a^3_o}{27}.\frac{1}{a_o}=\frac{32a^3_o}{27}\)
\(\Rightarrow I=a^3_o.\sqrt{\frac{\pi}{2}}.\left(\frac{32a^3_o}{27}-\frac{32a^3_o}{27}\right)=0\)
Vậy hai hàm sóng này trực giao với nhau.
b,
Xét hàm \(\Psi_{1s}\):
Hàm mật độ sác xuất là: \(D\left(r\right)=\Psi^2_{1s}=\frac{1}{\pi}.a^3_o.e^{-\frac{2r}{a_o}}\)
\(\Rightarrow D'\left(r\right)=-\frac{2.a_o^2}{\pi}.e^{-\frac{2r}{a_o}}=0\)
\(\Rightarrow\)Hàm đạt cực đại khi \(r\rightarrow o\) nên hàm sóng có dạng hình cầu.
Xét hàm \(\Psi_{2s}\):
Hàm mật độ sác xuất: \(D\left(r\right)=\Psi_{2s}^2=\frac{a^3_o}{32}.\left(2-\frac{r}{a_o}\right)^2.e^{-\frac{r}{a_0}}\)\(\Rightarrow D'\left(r\right)=\left(2-\frac{r}{a_o}\right).e^{-\frac{r}{a_o}}.\left(-4+\frac{r}{a_o}\right)=0\)
\(\Rightarrow r=2a_o\Rightarrow D\left(r\right)=0\); \(r=4a_o\Rightarrow D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)
Vậy hàm đạt cực đại khi \(r=4a_o\), tại \(D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)
hai hàm trực giao: I=\(\int\)\(\Psi\)*\(\Psi\)d\(\tau\)=0
Ta có: I=\(\int\limits^{ }_x\)\(\int\limits^{ }_y\)\(\int\limits^{ }_z\)\(\Psi\)*\(\Psi\)dxdydz=0
=\(\int\limits^{ }_r\)\(\int\limits^{ }_{\theta}\)\(\int\limits^{ }_{\varphi}\)\(\Psi\)1s\(\Psi\)2sr2sin\(\theta\)drd\(\theta\)d\(\varphi\)
=\(\int\limits^{\infty}_0\)\(\int\limits^{\pi}_0\)\(\int\limits^{2\pi}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2sin\(\theta\)drd\(\theta\)d\(\varphi\)
=C.\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr.\(\int\limits^{\pi}_0\)sin\(\theta\)\(\int\limits^{2\pi}_0\)d\(\varphi\)
với C=\(\frac{1}{4\sqrt{2\pi}}\)a0-3
Xét tích phân: J=\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr
=\(\int\limits^{\infty}_0\)(2r2- \(\frac{r^3}{a_0}\)).e-3r/a0dr
=\(\int\limits^{\infty}_0\)(2r2- \(\frac{r^3}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a0
=\(\frac{-2a_0}{3}\).((2r2-\(\frac{r^3}{a_0}\))e-3r/a0\(-\)\(\int\)(4r-\(\frac{3r^2}{a_0}\))e-3r/adr)
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 - \(\int\)(4r-\(\frac{3r^2}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a)
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0 - \(\int\)(4 - \(\frac{6r}{a_0}\))e-3r/a0dr))
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0- \(\int\)(4 - \(\frac{6r}{a_0}\))\(\frac{-2a_0}{3}\).de-3r/a0))
=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\)e-3r/a0dr)))
=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\).\(\frac{-2a_0}{3}\)de-3r/a0)))
=\(\frac{-2a_0}{3}\)((((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 - 4.e-3r/a0))))
=\(\frac{-2a_0}{3}\)e-3r/a0.\(\frac{-r^3}{a_0}\)=2/3.e-3r/a0.r3Thế cận tích phân 0 và \(\infty\) J= 0 suy ra I=0. Vậy 2 hàm số trực giaob1.\(\Psi\)1s=\(\frac{1}{\sqrt{\pi}}\).a03/2.e-r/a0.
Hàm mật độ xác suất :
Dr=|\(\Psi\)2|r2
=\(\frac{1}{\pi}\)a03.e-2r/a0.r2
xét \(\frac{dD_r}{r}\)= \(\frac{1}{\pi}\)a03.(r2.\(\frac{-2}{a_0}\)e-2r/a0+2r.e-2r/a0)
= \(\frac{1}{\pi}\)a03.e-2r/a0.2r.(1\(-\)\(\frac{r}{a_0}\))
\(\frac{dD_r}{r}\)=0 \(\Leftrightarrow\)r=a0.
tại r=a0 Dr đạt cực đại. Dmax=\(\frac{1}{\pi}\)a03.e-2.a02=\(\frac{1}{\pi}\)a05.e-2
b2. \(\Psi\)2s=\(\frac{1}{4\sqrt{2}}\)a03/2.(2-\(\frac{r}{a_0}\)).e-r/2ao.
Hám mật độ xác suất:
Dr=|\(\Psi\)2|r2.
=\(\frac{1}{32}\).a03.e-r/ao.(2-\(\frac{r}{a_0}\))2
=\(\frac{1}{32}\).a03.e-r/ao.(4-4.\(\frac{r}{a_0}\)+\(\frac{r^2}{a^2_0}\))
Xét \(\frac{dDr}{dr}\)= \(\frac{1}{32}\).a03.((e-r/ao.\(\frac{-1}{a_0}\).(2-\(\frac{r}{a_0}\))2+e-r/ao.(-.\(\frac{4}{a_0}\)+\(\frac{2r}{a^2_0}\))
=- \(\frac{1}{32}\).a03.e-r/ao.\(\frac{1}{a_0}\).(2-\(\frac{r}{a_0}\))(\(\frac{r}{a_0}\)-4)
\(\frac{dDr}{dr}\)=0 \(\Rightarrow\)r=2a0 hoặc r=4a0.tại r=2a0 Dr đạt cực đại. Drmax=0.
a) Điều kiện để hai hàm trực giao là:
\(I=\int\left(\psi_{1s}.\psi_{2s}\right)d_C=0\)\(\)
\(\Leftrightarrow I=\int\limits^{ }_r\int\limits^{ }_{\theta}\int\limits^{ }_{\varphi}\left(\psi_{1s}.\psi_{2s}\right).r^2\sin^2\theta d_rd_{\theta}d_{\varphi}\)
\(\Leftrightarrow I=C\int\limits^{\infty}_0\int\limits^{\pi}_0\int\limits^{2\pi}_0\left(2-\frac{r}{a_0}\right)e^{\frac{-r}{a_0}-\frac{r}{2a_0}}.r^2\sin^2\theta d_rd_{\theta}d_{\varphi}\)
\(\Leftrightarrow I=C\int\limits^{\infty}_0\left(2-\frac{r}{a_0}\right)e^{\frac{-3r}{2a_0}}.r^2d_r\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}\)
Xét tích phân :
A=\(\int\limits^{\infty}_0\left(2-\frac{r}{a_0}\right)e^{\frac{-3r}{2a_0}}.r^2d_r\)
áp dụng công thức tích phân từng phần ta có :
A=\(\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}.\left(2r^2-\frac{r^3}{a_0}\right)+\)\(\int\limits^{\infty}_0\frac{2a_0}{3}e^{\frac{-3r}{2a_0}}\left(4r-\frac{3r^2}{a_0}\right)d_r\)
=\(\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}.\left(2r^2-\frac{r^3}{a_0}\right)+\)\(\left(4r-\frac{3r^2}{a_0}\right)\frac{-4a^2_0}{9}e^{\frac{-3r}{2a_0}}+\frac{4a^2_0}{9}\int\limits^{\infty}_0\left(4-\frac{6r}{a_0}\right)e^{\frac{-3r}{2a_0}}d_r\)
=\(\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}.\left(2r^2-\frac{r^3}{a_0}\right)+\)\(\left(4r-\frac{3r^2}{a_0}\right)\frac{-4a^2_0}{9}e^{\frac{-3r}{2a_0}}\)+\(\frac{4a^2_0}{9}.\left(\left(4-\frac{6r}{a_0}\right).\frac{-2a_0}{3}.e^{\frac{-3r}{2a_0}}-4.\int\limits^{\infty}_0e^{\frac{-3r}{2a_0}}\right)\)
=\(\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}.\left(2r^2-\frac{r^3}{a_0}\right)+\)\(\left(4r-\frac{3r^2}{a_0}\right)\frac{-4a^2_0}{9}e^{\frac{-3r}{2a_0}}\)+\(\frac{4a^2_0}{9}\left(\left(4-\frac{6r}{a_0}\right)\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}-4.\frac{2a_0}{3}.e^{\frac{-3r}{2a_0}}\right)\)
=\(\frac{2}{3}e^{\frac{-3r}{2a_0}}.r^3\) Thê cận từ \(0\)đến \(\infty\) bằng 0
\(\Rightarrow I=0.\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}=0\) Vậy hai hàm trên trực giao .
Để hai hàm trực giao:
\(\int\limits^{ }_{ }\psi_{1s}\psi_{2s}d_k=0\)\(\Leftrightarrow I=\int\limits^{ }_r\int\limits^{ }_{\theta}\int\limits^{ }_{\varphi}\left(\psi_{1s}\psi_{2s}\right)r^2\sin^2\theta d_rd_{\theta}d_{\varphi}=0\)
\(\Leftrightarrow I=C.\int\limits^{\infty}_0\int\limits^{\pi}_0\int\limits^{2\pi}_0\left(2-\frac{r}{a_0}\right)e^{\frac{-r}{a_0}-\frac{r}{2a_0}}r^2\sin^2\theta d_rd_{\theta}d_{\varphi}=0\)
\(\Leftrightarrow I=\int\limits^{\infty}_0\left(2-\frac{r}{a_0}\right).r^2.e^{\frac{-3r}{2a_0}}d_r\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}=0\)
Xét tính phân
\(J=\int\limits^{\infty}_0\left(2-\frac{r}{a_0}\right)r^2e^{\frac{-3r}{2a_0}}d_r\)=\(2\int\limits^{\infty}_0r^2e^{\frac{-3r}{2a_0}}d_r-\frac{1}{a_0}\int\limits^{\infty}_0r^3e^{\frac{-3r}{2a_0}}d_r\)
áp dụng tích phân \(\int\limits^{\infty}_0x^ne^{-ax}d_x=\frac{n!}{a^{n+1}}\)
\(\Rightarrow J=2.\frac{2!}{\left(\frac{3}{2a_0}\right)^3}-\frac{1}{a_0}\frac{3!}{\left(\frac{3}{2a_0}\right)^4}\)\(=\frac{4.\frac{3}{2a_0}-\frac{6}{a_0}}{\left(\frac{3}{2a_0}\right)^4}=\frac{\frac{6}{a_0}-\frac{6}{a_0}}{\left(\frac{3}{2a_0}\right)^4}=0\)
\(\Rightarrow I=J.\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}=0.\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}=0\)
Vậy hai hàm sóng trên trực giao
câu a> 2 hàm sóng \(\Psi_{1s}=\frac{1}{\Pi}.a^{\frac{3}{2}}_0e^{\frac{-r}{a_0}}\) và \(\Psi_{2s}=\frac{1}{4\sqrt{2}}.\left(2-\frac{r}{a_0}\right).a^{\frac{3}{2}}_0e^{\frac{-r}{2a_0}}\)
Đk 2 hàm trực giao là : I = \(\int\)\(\Psi^*\Psi d\tau\) = 0
I = \(\int_x\int_y\int_z\)\(\Psi^*\Psi dxdydz\) = \(\int_r\int_{\theta}\int_{\varphi}\Psi_{1s}\Psi_{2s}r^2\sin\theta drd\theta d\varphi\) = C\(\int\limits^{\infty}_0\)\(\int\limits^{\pi}_0\)\(\int\limits^{2\pi}_0\)\(\left(2-\frac{r}{a_0}\right)e^{-\frac{r}{a_0}-\frac{r}{2a_0}}r^2sin\theta drd\theta d\varphi\)
= \(\int\limits^{\infty}_0\)\(\left(2-\frac{r}{a_0}\right)e^{-\frac{r}{a_0}-\frac{r}{2a_0}}r^2dr\)\(\int\limits^{\pi}_0\)\(sin\theta d\theta\)\(\int\limits^{2\pi}_0\)\(d\varphi\) = \(\int\limits^{\infty}_0\)\(\left(2r^2-\frac{r^3}{a_0}\right)e^{-\frac{3r}{2a_0}}dr\)\(\int\limits^{\pi}_0\)\(sin\theta d\theta\)\(\int\limits^{2\pi}_0\)\(d\varphi\)
Với C = \(\frac{1}{4\sqrt{2\Pi}}a^3_0\) ;ta thấy \(\int\limits^{\pi}_0\)\(sin\theta d\theta\)\(\int\limits^{2\pi}_0\)\(d\varphi\) \(\ne0\) nên ta chỉ xét A= \(\int\limits^{\infty}_0\)\(\left(2r^2-\frac{r^3}{a_0}\right)e^{-\frac{3r}{2a_0}}dr\)
nếu A = 0 thì 2 hàm sóng trên trực gIao
Đặt k = -\(\frac{3}{2}\)
A = \(\frac{1}{k}\)\(\int\limits^{\infty}_0\)\(\left(2r^2-\frac{r^3}{a_0}\right)de^{kr}\) = \(\frac{1}{k}\)\(\left\{\left(2r^2-\frac{r^3}{a_0}\right)e^{kr}-\frac{1}{k}\left[\left(4r-\frac{3r^2}{a_0}\right)e^{kr}-\int\limits^{\infty}_0e^{kr}\left(4-\frac{6r}{a_0}\right)dr\right]\right\}\) \(|_0^\infty\)
= \(\frac{2}{3}r^3e^{-\frac{3r}{2a_0}}\)
thay cận vào A ta được A = 0
suy ra I = 0 vậy 2 hàm đã cho ở trên trực giao với nhau (dpcm)