Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Van Tien

Câu 12

Cho 2 hàm sóng: \(\psi_{1s}=\frac{1}{\sqrt{\pi}}.a^{\frac{3}{2}}_0.e^{-\frac{r}{a_0}}\)và \(\psi_{2s}=\frac{1}{4\sqrt{2}}.a^{\frac{3}{2}}_0.\left(2-\frac{r}{a_0}\right).e^{-\frac{r}{2a_0}}\)

a) Hãy chứng minh hai hàm sóng trên trực giao nhau

b) Tìm hàm mật độ xác suất trong mỗi trường hợp và chỉ ra những vị trí mà mật độ xác suất đạt giá trị cực đại.

lê thị hà
1 tháng 2 2015 lúc 11:14

a, Ta có:

Hai hàm sóng trực giao nhau khi  \(I=\int\psi_{1s}.\psi_{2s}d\psi=0\) \(\Leftrightarrow I=\iiint\psi_{1s}.\psi_{2s}dxdydz=0\)

Chuyển sang tọa độ cầu ta có:  \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.\sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)

\(\Rightarrow\)\(I=\frac{a^3_o}{4.\sqrt{2.\pi}}\int\limits^{\infty}_0\left(2-\frac{r}{a_o}\right).e^{-\frac{3.r}{2.a_o}}.r^2.\sin\theta dr\int\limits^{2\pi}_0d\varphi\int\limits^{\pi}_0d\theta\)

       \(=a^3_o.\sqrt{\frac{\pi}{2}}\)(.\(2.\int\limits^{\infty}_0r^2.e^{-\frac{3.r}{2.a_o}}dr-\frac{1}{a_o}.\int\limits^{\infty}_0r^3.e^{-\frac{3.r}{2.a_o}}dr\))

         \(=a_o.\sqrt{\frac{\pi}{2}}.\left(2.I_1-\frac{1}{a_o}.I_2\right)\)  

Tính \(I_1\):

Đặt \(r^2=u\)\(e^{-\frac{3r}{2a_o}}dr=dV\)

\(\Rightarrow\begin{cases}2.r.dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)    \(\Rightarrow I_1=-r^2.\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}+\frac{4.a_o}{3}.\int\limits^{\infty}_0r.e^{-\frac{3r}{2a_o}}dr\)\(=0+\frac{4a_o}{3}.I_{11}\)

Tính \(I_{11}\):

Đặt r=u; \(e^{-\frac{3r}{2a_o}}dr=dV\)\(\Rightarrow\begin{cases}dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)\(\Rightarrow I_{11}=0+\frac{2a_0}{3}.\int\limits^{\infty}_0e^{-\frac{3r}{2a_o}}dr=\frac{4a^2_o}{9}\)

\(\Rightarrow2.I_1=2.\frac{4a_o}{3}.\frac{4a_o^2}{9}=\frac{32a^3_o}{27}\)

Tính \(I_2\):

Đặt \(r^2=u;e^{-\frac{3r}{2a_o}}dr=dV\) \(\Rightarrow\)\(3r^2dr=du;-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\)

\(\Rightarrow I_2=0+2.a_o.\int\limits^{\infty}_0r^2.e^{-\frac{3r}{2a_o}}dr\)\(\Rightarrow\frac{1}{a_o}.I_2=2a_o.\frac{16a^3_o}{27}.\frac{1}{a_o}=\frac{32a^3_o}{27}\)

\(\Rightarrow I=a^3_o.\sqrt{\frac{\pi}{2}}.\left(\frac{32a^3_o}{27}-\frac{32a^3_o}{27}\right)=0\)

Vậy hai hàm sóng này trực giao với nhau.

b,

Xét hàm \(\Psi_{1s}\):

Hàm mật độ sác xuất là: \(D\left(r\right)=\Psi^2_{1s}=\frac{1}{\pi}.a^3_o.e^{-\frac{2r}{a_o}}\)

\(\Rightarrow D'\left(r\right)=-\frac{2.a_o^2}{\pi}.e^{-\frac{2r}{a_o}}=0\)

\(\Rightarrow\)Hàm đạt cực đại khi \(r\rightarrow o\) nên hàm sóng có dạng hình cầu.

Xét hàm \(\Psi_{2s}\):

Hàm mật độ sác xuất: \(D\left(r\right)=\Psi_{2s}^2=\frac{a^3_o}{32}.\left(2-\frac{r}{a_o}\right)^2.e^{-\frac{r}{a_0}}\)\(\Rightarrow D'\left(r\right)=\left(2-\frac{r}{a_o}\right).e^{-\frac{r}{a_o}}.\left(-4+\frac{r}{a_o}\right)=0\)

\(\Rightarrow r=2a_o\Rightarrow D\left(r\right)=0\)\(r=4a_o\Rightarrow D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)

Vậy hàm đạt cực đại khi \(r=4a_o\), tại \(D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)

 

                

 

trần thị hương giang _ 2...
27 tháng 1 2015 lúc 16:22

hai hàm trực giao: I=\(\int\)\(\Psi\)*\(\Psi\)d\(\tau\)=0

Ta có: I=\(\int\limits^{ }_x\)\(\int\limits^{ }_y\)\(\int\limits^{ }_z\)\(\Psi\)*\(\Psi\)dxdydz=0

           =\(\int\limits^{ }_r\)\(\int\limits^{ }_{\theta}\)\(\int\limits^{ }_{\varphi}\)\(\Psi\)1s\(\Psi\)2sr2sin\(\theta\)drd\(\theta\)d\(\varphi\)

          =\(\int\limits^{\infty}_0\)\(\int\limits^{\pi}_0\)\(\int\limits^{2\pi}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2sin\(\theta\)drd\(\theta\)d\(\varphi\)

          =C.\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr.\(\int\limits^{\pi}_0\)sin\(\theta\)\(\int\limits^{2\pi}_0\)d\(\varphi\)

 với C=\(\frac{1}{4\sqrt{2\pi}}\)a0-3

 Xét tích phân: J=\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr

 =\(\int\limits^{\infty}_0\)(2r2\(\frac{r^3}{a_0}\)).e-3r/a0dr

 =\(\int\limits^{\infty}_0\)(2r2\(\frac{r^3}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a0

  =\(\frac{-2a_0}{3}\).((2r2-\(\frac{r^3}{a_0}\))e-3r/a0\(-\)\(\int\)(4r-\(\frac{3r^2}{a_0}\))e-3r/adr)

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 - \(\int\)(4r-\(\frac{3r^2}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a)

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a\(\int\)(4 - \(\frac{6r}{a_0}\))e-3r/a0dr))

 =\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0- \(\int\)(4 - \(\frac{6r}{a_0}\))\(\frac{-2a_0}{3}\).de-3r/a0))

 =\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\)e-3r/a0dr)))

=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\).\(\frac{-2a_0}{3}\)de-3r/a0)))

=\(\frac{-2a_0}{3}\)((((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 - 4.e-3r/a0))))

=\(\frac{-2a_0}{3}\)e-3r/a0.\(\frac{-r^3}{a_0}\)=2/3.e-3r/a0.r3Thế cận tích phân 0 và \(\infty\)            J= 0 suy ra I=0. Vậy 2 hàm số trực giao
trần thị hương giang _ 2...
27 tháng 1 2015 lúc 17:28

b1.\(\Psi\)1s=\(\frac{1}{\sqrt{\pi}}\).a03/2.e-r/a0.

Hàm mật độ xác suất :

      Dr=|\(\Psi\)2|r2

              =\(\frac{1}{\pi}\)a03.e-2r/a0.r2

xét \(\frac{dD_r}{r}\)\(\frac{1}{\pi}\)a03.(r2.\(\frac{-2}{a_0}\)e-2r/a0+2r.e-2r/a0)

           = \(\frac{1}{\pi}\)a03.e-2r/a0.2r.(1\(-\)\(\frac{r}{a_0}\))

        \(\frac{dD_r}{r}\)=0 \(\Leftrightarrow\)r=a0.

tại r=a0 Dr đạt cực đại. Dmax=\(\frac{1}{\pi}\)a03.e-2.a02=\(\frac{1}{\pi}\)a05.e-2

                                    

b2. \(\Psi\)2s=\(\frac{1}{4\sqrt{2}}\)a03/2.(2-\(\frac{r}{a_0}\)).e-r/2ao.

Hám mật độ xác suất:

    Dr=|\(\Psi\)2|r2.

       =\(\frac{1}{32}\).a03.e-r/ao.(2-\(\frac{r}{a_0}\))2

       =\(\frac{1}{32}\).a03.e-r/ao.(4-4.\(\frac{r}{a_0}\)+\(\frac{r^2}{a^2_0}\))

  Xét \(\frac{dDr}{dr}\)\(\frac{1}{32}\).a03.((e-r/ao.\(\frac{-1}{a_0}\).(2-\(\frac{r}{a_0}\))2+e-r/ao.(-.\(\frac{4}{a_0}\)+\(\frac{2r}{a^2_0}\))

              =- \(\frac{1}{32}\).a03.e-r/ao.\(\frac{1}{a_0}\).(2-\(\frac{r}{a_0}\))(\(\frac{r}{a_0}\)-4)

\(\frac{dDr}{dr}\)=0 \(\Rightarrow\)r=2a0 hoặc r=4a0.tại r=2a0 Dr đạt cực đại. Drmax=0.

     

             

Bùi Trọng Toàn mssv 2013...
28 tháng 1 2015 lúc 21:55

a) Điều kiện để hai hàm trực giao là:

\(I=\int\left(\psi_{1s}.\psi_{2s}\right)d_C=0\)\(\)

\(\Leftrightarrow I=\int\limits^{ }_r\int\limits^{ }_{\theta}\int\limits^{ }_{\varphi}\left(\psi_{1s}.\psi_{2s}\right).r^2\sin^2\theta d_rd_{\theta}d_{\varphi}\)

\(\Leftrightarrow I=C\int\limits^{\infty}_0\int\limits^{\pi}_0\int\limits^{2\pi}_0\left(2-\frac{r}{a_0}\right)e^{\frac{-r}{a_0}-\frac{r}{2a_0}}.r^2\sin^2\theta d_rd_{\theta}d_{\varphi}\)

\(\Leftrightarrow I=C\int\limits^{\infty}_0\left(2-\frac{r}{a_0}\right)e^{\frac{-3r}{2a_0}}.r^2d_r\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}\)

Xét tích phân :

A=\(\int\limits^{\infty}_0\left(2-\frac{r}{a_0}\right)e^{\frac{-3r}{2a_0}}.r^2d_r\)

áp dụng công thức tích phân từng phần ta có :

A=\(\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}.\left(2r^2-\frac{r^3}{a_0}\right)+\)\(\int\limits^{\infty}_0\frac{2a_0}{3}e^{\frac{-3r}{2a_0}}\left(4r-\frac{3r^2}{a_0}\right)d_r\)

=\(\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}.\left(2r^2-\frac{r^3}{a_0}\right)+\)\(\left(4r-\frac{3r^2}{a_0}\right)\frac{-4a^2_0}{9}e^{\frac{-3r}{2a_0}}+\frac{4a^2_0}{9}\int\limits^{\infty}_0\left(4-\frac{6r}{a_0}\right)e^{\frac{-3r}{2a_0}}d_r\)

=\(\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}.\left(2r^2-\frac{r^3}{a_0}\right)+\)\(\left(4r-\frac{3r^2}{a_0}\right)\frac{-4a^2_0}{9}e^{\frac{-3r}{2a_0}}\)+\(\frac{4a^2_0}{9}.\left(\left(4-\frac{6r}{a_0}\right).\frac{-2a_0}{3}.e^{\frac{-3r}{2a_0}}-4.\int\limits^{\infty}_0e^{\frac{-3r}{2a_0}}\right)\)

=\(\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}.\left(2r^2-\frac{r^3}{a_0}\right)+\)\(\left(4r-\frac{3r^2}{a_0}\right)\frac{-4a^2_0}{9}e^{\frac{-3r}{2a_0}}\)+\(\frac{4a^2_0}{9}\left(\left(4-\frac{6r}{a_0}\right)\frac{-2a_0}{3}e^{\frac{-3r}{2a_0}}-4.\frac{2a_0}{3}.e^{\frac{-3r}{2a_0}}\right)\)

=\(\frac{2}{3}e^{\frac{-3r}{2a_0}}.r^3\) Thê cận từ \(0\)đến \(\infty\) bằng 0 

\(\Rightarrow I=0.\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}=0\) Vậy hai hàm trên trực giao .

Bùi Trọng Toàn mssv 2013...
28 tháng 1 2015 lúc 22:32

Để hai hàm trực giao:

\(\int\limits^{ }_{ }\psi_{1s}\psi_{2s}d_k=0\)\(\Leftrightarrow I=\int\limits^{ }_r\int\limits^{ }_{\theta}\int\limits^{ }_{\varphi}\left(\psi_{1s}\psi_{2s}\right)r^2\sin^2\theta d_rd_{\theta}d_{\varphi}=0\)

\(\Leftrightarrow I=C.\int\limits^{\infty}_0\int\limits^{\pi}_0\int\limits^{2\pi}_0\left(2-\frac{r}{a_0}\right)e^{\frac{-r}{a_0}-\frac{r}{2a_0}}r^2\sin^2\theta d_rd_{\theta}d_{\varphi}=0\)

\(\Leftrightarrow I=\int\limits^{\infty}_0\left(2-\frac{r}{a_0}\right).r^2.e^{\frac{-3r}{2a_0}}d_r\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}=0\)

Xét tính phân 

\(J=\int\limits^{\infty}_0\left(2-\frac{r}{a_0}\right)r^2e^{\frac{-3r}{2a_0}}d_r\)=\(2\int\limits^{\infty}_0r^2e^{\frac{-3r}{2a_0}}d_r-\frac{1}{a_0}\int\limits^{\infty}_0r^3e^{\frac{-3r}{2a_0}}d_r\)

áp dụng tích phân \(\int\limits^{\infty}_0x^ne^{-ax}d_x=\frac{n!}{a^{n+1}}\)

\(\Rightarrow J=2.\frac{2!}{\left(\frac{3}{2a_0}\right)^3}-\frac{1}{a_0}\frac{3!}{\left(\frac{3}{2a_0}\right)^4}\)\(=\frac{4.\frac{3}{2a_0}-\frac{6}{a_0}}{\left(\frac{3}{2a_0}\right)^4}=\frac{\frac{6}{a_0}-\frac{6}{a_0}}{\left(\frac{3}{2a_0}\right)^4}=0\)

\(\Rightarrow I=J.\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}=0.\int\limits^{\pi}_0\sin^2\theta d_{\theta}\int\limits^{2\pi}_0d_{\varphi}=0\)

Vậy hai hàm sóng trên trực giao 

Lê Thị Liên
29 tháng 1 2015 lúc 11:33

câu a> 2 hàm sóng \(\Psi_{1s}=\frac{1}{\Pi}.a^{\frac{3}{2}}_0e^{\frac{-r}{a_0}}\)   và    \(\Psi_{2s}=\frac{1}{4\sqrt{2}}.\left(2-\frac{r}{a_0}\right).a^{\frac{3}{2}}_0e^{\frac{-r}{2a_0}}\)

Đk 2 hàm trực giao là : I = \(\int\)\(\Psi^*\Psi d\tau\) = 0

I = \(\int_x\int_y\int_z\)\(\Psi^*\Psi dxdydz\)    =   \(\int_r\int_{\theta}\int_{\varphi}\Psi_{1s}\Psi_{2s}r^2\sin\theta drd\theta d\varphi\)      =        C\(\int\limits^{\infty}_0\)\(\int\limits^{\pi}_0\)\(\int\limits^{2\pi}_0\)\(\left(2-\frac{r}{a_0}\right)e^{-\frac{r}{a_0}-\frac{r}{2a_0}}r^2sin\theta drd\theta d\varphi\)

= \(\int\limits^{\infty}_0\)\(\left(2-\frac{r}{a_0}\right)e^{-\frac{r}{a_0}-\frac{r}{2a_0}}r^2dr\)\(\int\limits^{\pi}_0\)\(sin\theta d\theta\)\(\int\limits^{2\pi}_0\)\(d\varphi\)    =    \(\int\limits^{\infty}_0\)\(\left(2r^2-\frac{r^3}{a_0}\right)e^{-\frac{3r}{2a_0}}dr\)\(\int\limits^{\pi}_0\)\(sin\theta d\theta\)\(\int\limits^{2\pi}_0\)\(d\varphi\)

Với C = \(\frac{1}{4\sqrt{2\Pi}}a^3_0\)  ;ta thấy \(\int\limits^{\pi}_0\)\(sin\theta d\theta\)\(\int\limits^{2\pi}_0\)\(d\varphi\)   \(\ne0\)     nên ta chỉ xét A= \(\int\limits^{\infty}_0\)\(\left(2r^2-\frac{r^3}{a_0}\right)e^{-\frac{3r}{2a_0}}dr\)

nếu A = 0 thì 2 hàm sóng trên trực gIao

Đặt k = -\(\frac{3}{2}\)

A = \(\frac{1}{k}\)\(\int\limits^{\infty}_0\)\(\left(2r^2-\frac{r^3}{a_0}\right)de^{kr}\)     =     \(\frac{1}{k}\)\(\left\{\left(2r^2-\frac{r^3}{a_0}\right)e^{kr}-\frac{1}{k}\left[\left(4r-\frac{3r^2}{a_0}\right)e^{kr}-\int\limits^{\infty}_0e^{kr}\left(4-\frac{6r}{a_0}\right)dr\right]\right\}\)  \(|_0^\infty\)

=    \(\frac{2}{3}r^3e^{-\frac{3r}{2a_0}}\)

thay cận vào  A ta được     A = 0 

suy ra I = 0 vậy 2 hàm đã cho ở trên trực giao với nhau (dpcm)


Các câu hỏi tương tự
Pham Van Tien
Xem chi tiết
Pham Van Tien
Xem chi tiết
Trần Khắc Khánh
Xem chi tiết
Pham Van Tien
Xem chi tiết
Trần Khắc Khánh
Xem chi tiết
Trần Khắc Khánh
Xem chi tiết
Trương Ngọc Thắng
Xem chi tiết
Trương Ngọc Thắng
Xem chi tiết
Trương Ngọc Thắng
Xem chi tiết