Câu 1:
\(C=\dfrac{1}{x+2}-\dfrac{x^3-4x}{x^2+4}\cdot\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{4-x^2}\right)\)
a) Rút gọn C
b) x bằng mấy để C = 1?
Câu 2:
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
Câu 3: Rút gọn:
\(A=\left[\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\right]:\dfrac{2a}{a^3+a}\)
cho biểu thức A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)với x≥0,x≠1
a)rút gọn A
b)tìm x nguyên để M =A.\(\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}+\dfrac{x-\sqrt{x}-5}{\sqrt{x}+3}\)có giá trị nguyên
1/ Tính: \(\sqrt[3]{54}-\sqrt[3]{16}\)
2/ so sánh các cặp số sau
a) \(3\sqrt{2}\) và \(2\sqrt{3}\)
b) 4.\(\sqrt[3]{5}\) và 5.\(\sqrt[3]{4}\)
3/ cho biểu thức A= \(_{\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)}\)\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a) tìm điều kiện x để A có nghĩa
b) Rút gọn A
1. Rút gọn biểu thức
\(\sqrt{\dfrac{4}{3}}+\sqrt{12}-\dfrac{4}{3}\sqrt{\dfrac{3}{4}}\)
2. Đưa thừa số vào trong dấu căn :
a. \(\left(2-a\right)\sqrt{\dfrac{2a}{a-2}}\) với a lớn hơn 2
b. với 0 bé hơn x, x bé hơn 5. \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\)
c. Với 0 bé hơn a, a bé hơn b \(\left(a-b\right)\)\(\sqrt{\dfrac{3a}{b^2-a^2}}\)
cho biểu thức A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}\)
rút gọn A và tìm giá trị lớn nhất của A
Rút gọn:
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+1}{x+\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{x-\sqrt{x}-4}{x+\sqrt{x}-2}\right)\)
Tìm ĐKXĐ:
a) \(\dfrac{3}{\sqrt{12x-1}}\)
b) \(\sqrt{\left(3x+2\right)\left(x-1\right)}\)
c) \(\sqrt{3x-2}\) .\(\sqrt{x-1}\)
d) \(\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\)
Bài 3: Trong các biểu thức sau, đâu là đơn thức?
(1-\(\dfrac{1}{\sqrt{3}}\)) x2; \(\dfrac{1}{2}\)(x2 - 1); x2. \(\dfrac{7}{2}\); 6\(\sqrt{y}\); \(\dfrac{1-\sqrt{5}}{x}\); \(\dfrac{x-y^2}{4}\)
Bài 1 :cho \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
tìm x để P =2
Rút gọn:
\(C=\left(\dfrac{1}{x+1}-\dfrac{x+3\sqrt{x}-4}{\left(x^2-1\right)\left(\sqrt{x}+4\right)}\right):\dfrac{\sqrt{x}+1}{x^2\sqrt{x}+x^2-\sqrt{x}-1}\)