\(P=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\left(đk:x>0\right)\)
Với `x>0` ta có
`P=2`
\(< =>\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\\ < =>3\sqrt{x}=2\sqrt{x}+4\\ < =>\sqrt{x}=4\\ < =>x=16\left(tm\right)\)
Vậy `x=16` thì `P=2`
\(P=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\left(đk:x>0\right)\)
Với `x>0` ta có
`P=2`
\(< =>\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\\ < =>3\sqrt{x}=2\sqrt{x}+4\\ < =>\sqrt{x}=4\\ < =>x=16\left(tm\right)\)
Vậy `x=16` thì `P=2`
cho biểu thức A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)với x≥0,x≠1
a)rút gọn A
b)tìm x nguyên để M =A.\(\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}+\dfrac{x-\sqrt{x}-5}{\sqrt{x}+3}\)có giá trị nguyên
cho biểu thức A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}\)
rút gọn A và tìm giá trị lớn nhất của A
Câu 1:
\(C=\dfrac{1}{x+2}-\dfrac{x^3-4x}{x^2+4}\cdot\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{4-x^2}\right)\)
a) Rút gọn C
b) x bằng mấy để C = 1?
Câu 2:
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
Câu 3: Rút gọn:
\(A=\left[\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\right]:\dfrac{2a}{a^3+a}\)
Bài 1: giải ft
a)\(\frac{1}{x\left(x+2\right)}-\frac{1}{\left(x+1\right)^2}=\frac{1}{2}\)
b)\(\sqrt{4x^2-x+4}=3x+2\)
c)\(\sqrt{x^2-2x+5}=x^2-2x-1\)
d)\(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\)
e)\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
Bài 2:Tìm nghiệm của ft
a)x+xy+y=9
b)\(x^2+xy+y^2=x^2y^2\)
Bài 3:Cho A=\(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
a)Rút gọn A
b)Tìm x để A>A^2
c)Tìm x để /A/=1/4
Tìm ĐKXĐ:
a) \(\dfrac{3}{\sqrt{12x-1}}\)
b) \(\sqrt{\left(3x+2\right)\left(x-1\right)}\)
c) \(\sqrt{3x-2}\) .\(\sqrt{x-1}\)
d) \(\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\)
Bài 3: Trong các biểu thức sau, đâu là đơn thức?
(1-\(\dfrac{1}{\sqrt{3}}\)) x2; \(\dfrac{1}{2}\)(x2 - 1); x2. \(\dfrac{7}{2}\); 6\(\sqrt{y}\); \(\dfrac{1-\sqrt{5}}{x}\); \(\dfrac{x-y^2}{4}\)
cho 2 biểu thức M =\(\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
P=\(\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)+\(\dfrac{2-8\sqrt{x}}{x-1}\)-\(\dfrac{2}{1-\sqrt{x}}\)
1/ Tính: \(\sqrt[3]{54}-\sqrt[3]{16}\)
2/ so sánh các cặp số sau
a) \(3\sqrt{2}\) và \(2\sqrt{3}\)
b) 4.\(\sqrt[3]{5}\) và 5.\(\sqrt[3]{4}\)
3/ cho biểu thức A= \(_{\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)}\)\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a) tìm điều kiện x để A có nghĩa
b) Rút gọn A
Rút gọn:
\(A=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)