\(m^3+m^2-2m=0\)
\(\Leftrightarrow m^3+2m^2-m^2-2m=0\)
\(\Leftrightarrow m^2\left(m+2\right)-m\left(n+2\right)=0\)
\(\Leftrightarrow\left(m^2-m\right)\left(m+2\right)=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m-1=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\\m=-2\end{matrix}\right.\)
Vậy...