Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiếu Minh

1. Cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\)

Tìm max \(T=\sqrt[3]{a+2b}+\sqrt[3]{b+2c}+\sqrt[3]{c+2a}\)

2. Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z\le1\end{matrix}\right.\)

Tìm min \(K=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)

missing you =
3 tháng 7 2022 lúc 21:05

\(\sqrt[3]{9}T=\sqrt[3]{3}\Sigma\sqrt{a+2b}=\Sigma\sqrt[3]{3.3\left(a+2b\right)}\le\dfrac{a+2b+3+3+b+2c+3+3+c+2a+3+3}{3}=\dfrac{3\left(a+b+c\right)+18}{3}=9\Leftrightarrow T\le\dfrac{9}{\sqrt[3]{9}}\)

\(2,,,,K=\Sigma\sqrt{x^2+\dfrac{1}{x^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x^{ }}+\dfrac{1}{y^{ }}+\dfrac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\dfrac{81}{\left(x+y+z\right)^2}}=\sqrt{\left(x+y+z\right)^2+\dfrac{1}{\left(x+y+z\right)^2}+\dfrac{80}{\left(x+y+z\right)^2}}\ge\sqrt{2+80}=\sqrt{82}\)

Trần Tuấn Hoàng
3 tháng 7 2022 lúc 21:06

1) \(T=\sqrt[3]{a+2b}+\sqrt[3]{b+2c}+\sqrt[3]{c+2a}\)

\(=\dfrac{1}{\sqrt[3]{9}}.\sqrt[3]{\left(a+2b\right).3.3}+\dfrac{1}{\sqrt[3]{9}}.\sqrt[3]{\left(b+2c\right).3.3}+\dfrac{1}{\sqrt[3]{9}}.\sqrt[3]{\left(c+2a\right).3.3}\)

\(\le\dfrac{1}{\sqrt[3]{9}}.\left[\dfrac{\left(a+2b\right)+3+3}{3}+\dfrac{\left(b+2c\right)+3+3}{3}+\dfrac{\left(c+2a\right)+3+3}{3}\right]\)

\(=\dfrac{1}{\sqrt[3]{9}}.\left[\left(a+b+c\right)+6\right]=\dfrac{1}{\sqrt[3]{9}}.\left(3+6\right)=\dfrac{9}{\sqrt[3]{9}}=3\sqrt[3]{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(MaxT=3\sqrt[3]{3}\)

 

Trần Tuấn Hoàng
3 tháng 7 2022 lúc 21:24

Mk ko dùng kí hiệu sigma cyc nhé (\(\sum\)), sợ bạn không hiểu.

2) \(K=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)

\(=\dfrac{1}{\sqrt{1^2+9^2}}.\sqrt{\left(x^2+\dfrac{1}{x^2}\right)\left(1^2+9^2\right)}+\dfrac{1}{\sqrt{1^2+9^2}}.\sqrt{\left(y^2+\dfrac{1}{y^2}\right)\left(1^2+9^2\right)}+\dfrac{1}{\sqrt{1^2+9^2}}.\sqrt{\left(z^2+\dfrac{1}{z^2}\right)\left(1^2+9^2\right)}\)

\(\ge\dfrac{1}{\sqrt{82}}\left[\sqrt{\left(x.1+\dfrac{1}{x}.9\right)^2}+\sqrt{\left(y.1+\dfrac{1}{y}.9\right)^2}+\sqrt{\left(z.1+\dfrac{1}{z}.9\right)^2}\right]\)

\(=\dfrac{1}{\sqrt{82}}.\left[\left(x+\dfrac{9}{x}\right)+\left(y+\dfrac{9}{y}\right)+\left(z+\dfrac{9}{z}\right)\right]\)

\(=\dfrac{1}{\sqrt{82}}.\left[\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\dfrac{80}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right]\)

\(\ge\dfrac{1}{\sqrt{82}}\left(2\sqrt{x.\dfrac{1}{9x}}+2\sqrt{y.\dfrac{1}{9y}}+2\sqrt{z.\dfrac{1}{9z}}+\dfrac{80}{9}.\dfrac{9}{x+y+z}\right)\)

\(\ge\dfrac{1}{\sqrt{82}}.\left(\dfrac{2}{3}+\dfrac{2}{3}+\dfrac{2}{3}+\dfrac{80}{1}\right)\)

\(=\sqrt{82}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Vậy \(MinK=\sqrt{82}\)

 


Các câu hỏi tương tự
Hiếu Minh
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
mynameisbro
Xem chi tiết
Kim Tuyền
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Linh Linh
Xem chi tiết
ILoveMath
Xem chi tiết
Lizy
Xem chi tiết