\(\dfrac{1}{3}-x=\dfrac{5}{6}-\dfrac{1}{4}\)
⇔ \(\dfrac{1}{3}-x=\dfrac{7}{12}\)
⇔ \(x=\dfrac{-1}{4}\)
a: \(\dfrac{1}{3}-x=\dfrac{5}{6}-\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{3}-x=\dfrac{7}{12}\)
\(\Leftrightarrow x=\dfrac{1}{3}-\dfrac{7}{12}=\dfrac{4-7}{12}=\dfrac{-1}{4}\)
b: \(\dfrac{1}{10}-\left(x-\dfrac{3}{25}\right)=\dfrac{1}{50}\)
\(\Leftrightarrow x-\dfrac{3}{25}=\dfrac{2}{25}\)
hay \(x=\dfrac{1}{5}\)
a. \(\dfrac{1}{3}-x=\dfrac{5}{6}-\dfrac{1}{4}\)
<=> \(-x=\dfrac{5}{6}-\dfrac{1}{4}-\dfrac{1}{3}\)
<=> \(-x=\dfrac{1}{4}\)
<=> \(x=\dfrac{-1}{4}\)
b. \(\dfrac{1}{10}-\left(x-\dfrac{3}{25}\right)=\dfrac{1}{50}\)
<=> \(\dfrac{1}{10}-x+\dfrac{3}{25}=\dfrac{1}{50}\)
<=> \(-x=\dfrac{1}{50}-\dfrac{1}{10}-\dfrac{3}{25}\)
<=> \(-x=\dfrac{-1}{5}\)
<=> \(x=\dfrac{1}{5}\)
\(\dfrac{1}{10}-\left(x-\dfrac{3}{25}\right)=\dfrac{1}{50}\)
⇔ \(x-\dfrac{3}{25}=\dfrac{2}{25}\)
⇔ \(x=\dfrac{1}{5}\)
\(a\)) \(\dfrac{1}{3}-x=\dfrac{5}{6}-\dfrac{1}{4}\) \(b\)) \(\dfrac{1}{10}-\left(x-\dfrac{3}{25}\right)=\dfrac{1}{50}\)
\(\dfrac{1}{3}-x=\dfrac{7}{12}\) \(x-\dfrac{3}{25}=\dfrac{1}{50}+\dfrac{1}{10}\)
\(x=\dfrac{1}{3}-\dfrac{7}{12}\) \(x-\dfrac{3}{25}=\dfrac{3}{25}\)
\(x=-\dfrac{1}{4}\) \(x=\dfrac{3}{25}+\dfrac{3}{25}\)
\(x=\dfrac{6}{25}\)