Rút gọn biểu thức:
\(B=\left(\dfrac{b}{b+8}-\dfrac{4b}{\left(\sqrt[3]{b}+2\right)^3}\right)\left(\dfrac{1+2\sqrt[3]{\dfrac{1}{b}}}{1-2\sqrt[3]{\dfrac{1}{b}}}\right)^2-\dfrac{24}{b+8}\)
Rút gọn biểu thức:
\(B=\left(\dfrac{b}{b+8}-\dfrac{4b}{\left(\sqrt[3]{b}+2\right)^3}\right)\left(\dfrac{1+2\sqrt[3]{\dfrac{1}{b}}}{1-2\sqrt[3]{\dfrac{1}{b}}}\right)^2-\dfrac{24}{b+8}\)
Đặt \(\sqrt[3]{b}=x\Rightarrow b=x^3\). Khi đó biểu thức B được biến đổi về dạng :
\(B=\left(\dfrac{x^3}{x^3+8}-\dfrac{4x^3}{\left(x+2\right)^3}\right).\left(\dfrac{1+\dfrac{2}{x}}{1-\dfrac{2}{x}}\right)^2-\dfrac{24}{x^3+8}\)
ĐK: \(x\ne0;x\ne\pm2\)
\(B=\left(\dfrac{x^3}{x^3+8}-\dfrac{4x^3}{\left(x+2\right)^3}\right).\left(\dfrac{x+2}{x-2}\right)^2-\dfrac{24}{x^3+8}\)
\(B=\dfrac{x^3\left(x+2\right)^2-4x^3\left(x^2-2x+4\right)}{\left(x+2\right)^3\left(x^2-2x+4\right)}.\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2}-\dfrac{24}{x^3+8}\)
\(=\dfrac{-3x^5+12x^4-12x^3}{\left(x+2\right)^3\left(x^2-2x+4\right)}.\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2}-\dfrac{24}{x^3+8}\)
\(=\dfrac{-3x^3\left(x-2\right)^2}{\left(x+2\right)^3\left(x^2-2x+4\right)}.\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2}-\dfrac{24}{x^3+8}\)
\(=\dfrac{-3x^3}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{24}{x^3+8}=\dfrac{-3x^3}{x^3+8}-\dfrac{24}{x^3+8}\)
\(=\dfrac{-3\left(x^3+8\right)}{x^3+8}=-3\)
CMR: \(\sqrt[3]{1+\dfrac{\sqrt{84}}{5}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{5}}\in Z\)
Bấm thử máy tính nó có ra số nguyên đâu em? Xem lại đề bài nhé.
y=3√(10+6√3) +3√(10-6√3)
Giải hộ mình luôn nha nếu được giải chi tiết nhé
\(\text{Y}=\sqrt[3]{\left(10+6\sqrt{3}\right)}+\sqrt[3]{\left(10-6\sqrt{3}\right)}\)
\(\text{Y}=\sqrt[3]{\left(\sqrt{3}\right)^2+3.\left(\sqrt{3}\right)^2.1+3\sqrt{3}.1^2+1^3}-\sqrt[3]{\left(\sqrt{3}\right)^3-3.\left(\sqrt{3}\right)^2.1+3\sqrt{3.1^2-1^3}}\)
\(\text{Y}=\sqrt[3]{\left(\sqrt{3}+1\right)^3}-\sqrt[3]{\left(\sqrt{3}\right)-1^3}\)
\(\text{Y}=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)\)
\(\Rightarrow\text{Y}=2\)
Mọi người giúp mk với
x^3+x^2-x+1 = 0
\(x^3+x^{^{ }2}-x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-1\right)=0\)
\(\left[{}\begin{matrix}x+1=0\Leftrightarrow x=-1\\x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=1\end{matrix}\right.\)
Chúc bạn học tốt!
Gỉai phương trình sau :
\(\sqrt[3]{x^3+8}=x+2\)
\(\sqrt[3]{x^3+8}=x+2\)
\(\Leftrightarrow x^3+8=\left(x+2\right)^3\)
\(\Leftrightarrow x^3+8=x^3+6x^2+12x+8\)
\(\Leftrightarrow6x^2+12x=0\)
\(\Leftrightarrow6x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{0;-2\right\}\)
Giaỉ phương trình :
a) \(x^3=2\)
b) \(27x^3=-81\)
c) \(\sqrt[3]{3x+1}=4\)
d) \(\sqrt[3]{x-2}+2=x\)
a) \(x^3=2\\ x=\Leftrightarrow x=\sqrt[3]{2}\)
b)\(27x^3=-81\\ \Leftrightarrow x^3=-3\\ x=\Leftrightarrow x=\sqrt[3]{-3}\)
c) \(\sqrt[3]{3x+1}=4\\ \Leftrightarrow3x+1=64\\ \Leftrightarrow3x=64-1\\ \Leftrightarrow3x=63\\ \Leftrightarrow x=21\)
d)\(\sqrt[3]{x-2}+2=x\\ \Leftrightarrow\sqrt[3]{x-2}=x-2\\ \Leftrightarrow x-2=\left(x-2\right)^3\\ \Leftrightarrow\left(x-2\right)-\left(x-2\right)^3=0\\ \Leftrightarrow\left(x-2\right)\left[1-\left(x-2\right)^2\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\1-\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Giải:
a) \(x^3=2\)
\(\Leftrightarrow x^3=\left(\sqrt[3]{2}\right)^3\)
\(\Leftrightarrow x=\sqrt[3]{2}\)
Vậy ...
b) \(27x^3=-81\)
\(\Leftrightarrow x^3=-3\)
\(\Leftrightarrow x^3=\left(\sqrt[3]{-3}\right)^3\)
\(\Leftrightarrow x=\sqrt[3]{-3}\)
Vậy ...
c) \(\sqrt[3]{3x+1}=4\)
\(\Leftrightarrow\sqrt[3]{3x+1}=\sqrt[3]{64}\)
\(\Leftrightarrow3x+1=64\)
\(\Leftrightarrow3x=63\)
\(\Leftrightarrow x=21\)
Vậy ...
d) \(\sqrt[3]{x-2}+2=x\)
\(\Leftrightarrow\sqrt[3]{x-2}=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy ...
Rút gọn :
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
b) B = \(\sqrt[3]{7+5\sqrt{2}}\)
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\\ =3-\left(-2\right)-5\\ =3+2-5\\ =0\)
b) \(B=\sqrt[3]{7+5\sqrt{2}}\\ =\sqrt[3]{1+6+3\sqrt{2}+2\sqrt{2}}\\ =\sqrt[3]{1+3\sqrt{2}+6+2\sqrt{2}}\\ =\sqrt[3]{\left(1+\sqrt{2}\right)^2}\\ =1+\sqrt{2}\)
\(\left\{{}\begin{matrix}\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}\\cmvoia>\dfrac{1}{8}thixnguyen\end{matrix}\right.\)
Tính giá trị biểu thức A = (\(^{3x^3}\)+ \(^{8x^2}\)+2)2009 - 32009
Với x = \(\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\dfrac{5-4}{\sqrt{5}+3-\sqrt{5}}=\dfrac{1}{3}\)A=\(\left(3\left(\dfrac{1}{3}\right)^3+8\left(\dfrac{1}{3}\right)^2+2\right)^{2009}-3^{2009}=3^{2009}-3^{2009}=0\)
Bài 1: Tính
A= \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
B=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
Bài 2: PTTNT:
a) \(\sqrt[3]{15}-\sqrt[3]{21}\)
b)\(\sqrt[3]{3}-3\)
c)\(\sqrt[3]{a^2x}+\sqrt[3]{b^2x}\)
Bài 2:
a: \(=\sqrt[3]{3}\left(\sqrt[3]{5}-\sqrt[3]{7}\right)\)
b: \(=\sqrt[3]{3}\left(1-\sqrt[3]{9}\right)\)
c: \(=\sqrt[3]{x}\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}\right)\)