Chứng minh rằng với \(a\in R\) và \(a>\dfrac{1}{8}\) thì
\(A=\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}\) là một số tự nhiên
c, Rút gọn.
a, \(\sqrt[3]{27a^3}-2a\) b, \(\sqrt[3]{27a^3}-\sqrt[3]{-8a^3}-\sqrt[3]{125a^3}\)
c, \(\sqrt[3]{16x^3}-\sqrt[3]{-54x^3}-\sqrt[3]{128x^3}\) d, \(\sqrt[3]{\dfrac{1}{8}y^6}+\sqrt[3]{\dfrac{1}{27}y^3}-\sqrt[3]{-\dfrac{1}{216}y^3}\)
8.cho biểu thức:p=\(\left(\dfrac{2a+1}{\sqrt{a^3}+1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right).\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a)rút gọn p
b)xét dấu của biểu thức p .\(\sqrt{1-a}\)
Rút gọn biểu thức:
\(B=\left(\dfrac{b}{b+8}-\dfrac{4b}{\left(\sqrt[3]{b}+2\right)^3}\right)\left(\dfrac{1+2\sqrt[3]{\dfrac{1}{b}}}{1-2\sqrt[3]{\dfrac{1}{b}}}\right)^2-\dfrac{24}{b+8}\)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)
A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tính A với x=14-6\(\sqrt{5}\)
c) Tìm Min A
7.cho biểu thức:
\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\) a)rút gon P
b)tính giá trị của P khi x =\(\dfrac{1}{2}\left(3+2\sqrt{2}\right)\)
Tính:a)\(\left(\dfrac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\dfrac{1}{3}}\right)\):\(2\sqrt[3]{\dfrac{1}{3}}\)
b)\(\left(\sqrt[3]{4}+1\right)^3\)-\(\left(\sqrt[3]{4}-1\right)^3\)
c)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\)\(\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)