Tính giá trị của M = 2015.(x^3 - 3x - 5)^2014 khi x = \(\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\)
Tính giá trị của M = 2015.(x^3 - 3x - 5)^2014 khi x = \(\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\)
Ta có:
\(x=\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\)
\(\Leftrightarrow x^3=2+\sqrt{3}+2-\sqrt{3}+3\left(\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\right).\sqrt[3]{2+\sqrt{3}}.\sqrt[3]{2-\sqrt{3}}\)
\(\Leftrightarrow x^3=4+3x\)
\(\Leftrightarrow x^3-3x-4=0\)
Thế vào ta có:
\(M=2015\left(x^3-3x-5\right)^{2014}=2015\left[\left(x^3-3x-4\right)-1\right]^{2014}\)
\(=2015.\left(-1\right)^{2014}=2015\)
\(x=\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\)
\(x^3=2+\sqrt{3}+2-\sqrt{3}+3.\sqrt[3]{2+\sqrt{3}}.\sqrt[3]{2-\sqrt{3}}\left(\sqrt[3]{2+\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\right)\)
\(x^3=4+3x\)
\(x^3-3x=4\)
\(M=2015\left(x^3-3x-5\right)^{2014}=2015\left(4-5\right)^{2014}=2015\)
GIẢI PHƯƠNG TRÌNH
1. \(\sqrt[3]{\left(3x+1\right)^2}+\sqrt[3]{\left(3x-1\right)^2}+\sqrt[3]{9x^2-1}=1\)
2. \(\sqrt[3]{\dfrac{1}{2}+x}+\sqrt[3]{\dfrac{1}{2}-x}=1\)
CÁC BẠN GIÚP MÌNH VỚI!
Câu 1:
\(\sqrt[3]{\left(3x+1\right)^2}+\sqrt[3]{\left(3x-1\right)^2}+\sqrt[3]{9x^2-1}=1\)
\(\Leftrightarrow\left(\sqrt[3]{3x+1}\right)^2+\left(\sqrt[3]{3x-1}\right)^2+\sqrt[3]{\left(3x-1\right)\left(3x+1\right)}=1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x+1}=a\\\sqrt[3]{3x-1}=m\end{matrix}\right.\), ta có hpt:
\(\left\{{}\begin{matrix}a^2+m^2+am=1\\a^3-m^3=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+am+m^2=1\\\left(a-m\right)\left(a^2+am+m^2\right)=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+am+m^2=1\left(1\right)\\a-m=2\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Rightarrow a=m+2\). Thay vào (1)
\(\Rightarrow\left(m+2\right)^2+\left(m+2\right)m+m^2=1\)
\(\Leftrightarrow3m^2+6m+3=0\)
\(\Leftrightarrow3\left(m+1\right)^2=0\)
\(\Leftrightarrow m=-1\)
\(\Rightarrow\sqrt[3]{3x-1}=-1\)
\(\Leftrightarrow3x-1=-1\)
\(\Leftrightarrow x=0\)
Câu 2: Đặt ẩn phụ và giải hpt như câu 1 >v<"
thực hiện phép tính sau
\(\dfrac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}-\dfrac{\sqrt[3]{3}+\sqrt[3]{2}}{5}\)
tính \(\sqrt[3]{4+\sqrt{5}}-\sqrt[3]{4-\sqrt{5}}\)
A=\(\sqrt[3]{4+\sqrt{5}}\)-\(\sqrt[3]{4-\sqrt{5}}\)
\(^{A^3}\)= (\(\sqrt[3]{4+\sqrt{5}}-\sqrt[3]{4-\sqrt{5}}\))3
=(\(\sqrt[3]{4+\sqrt{5}}\))3 -\(\left(\sqrt[3]{4-\sqrt{5}}\right)^3\)\(-3\sqrt[3]{\left(4+\sqrt{5}\right)^2}.\sqrt[3]{4-\sqrt{5}}+3\sqrt[3]{\left(4-\sqrt{5}\right)^2}.\sqrt[3]{4+\sqrt{5}}\)
=4+\(\sqrt{5}\) -4+\(\sqrt{5}\)\(-3\sqrt[3]{4+\sqrt{5}}.\sqrt[3]{4-\sqrt{5}}\left(\sqrt[3]{4+\sqrt{5}}-\sqrt[3]{4-\sqrt{5}}\right)=2\sqrt{5}-3\sqrt[3]{\left(4+\sqrt{5}\right).\left(4-\sqrt{5}\right)}.A=2\sqrt{5}-3\sqrt[3]{16-5}.A=2\sqrt{5}-3\sqrt[3]{11}.A\Rightarrow A^3+3\sqrt[3]{11}.A-2\sqrt{5}=0\)
Giải phương trình :\(\sqrt[3]{x+\dfrac{1}{2}}\) = \(16x^3\) \(-1\)
\(\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
\(\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
=\(\dfrac{1}{\sqrt[3]{4-\sqrt{15}}}+\dfrac{\sqrt[3]{4-\sqrt{15}}}{1}\)
=\(\dfrac{\left(\sqrt[3]{4-\sqrt{15}}\right)^2}{\sqrt[3]{4-\sqrt{15}}}\)
=\(\sqrt[3]{4-\sqrt{15}}\).
mình nhầm từ bước 3 thực xin lỗi:
=\(\dfrac{1+\sqrt[3]{\left(4-\sqrt{15}\right)^2}}{\sqrt[3]{4-\sqrt{15}}}\)
=\(=\dfrac{1+\sqrt[3]{31-8\sqrt{15}}}{\sqrt[3]{4-\sqrt{15}}}\)
Cho tam giác ABC cân có góc A = 20độ, AB=AC=a,BC=b. chứng minh hệ thức:
\(a^3+b^3=3ab^3\)
Giải pt:
\(\sqrt{x+1}+\sqrt[3]{x-2}=3\)
Ai giúp mik với.
đặt \(\sqrt{x+1}=a\),\(\sqrt[3]{x-2}=b\)
rồi suy ra hệ:
\(\left\{{}\begin{matrix}a+b=3\\a^2+b^3=2x-1\end{matrix}\right.\)
Cho biểu thức
P = ( \(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\)) :(\(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\))
Rút gọn P
Cho biểu thức:
P = (\(\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\dfrac{1}{\sqrt{x}-1}\)) : (1+ \(\dfrac{\sqrt{x}}{x+1}\))
a) Rút gọn P
b) Tìm x để P =< 0
a) \(P=\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1+\dfrac{\sqrt{x}}{x+1}\right)\)
\(P=\left[\dfrac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)
\(P=\left[\dfrac{2\sqrt{x}-\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)
\(P=\left[\dfrac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)
\(P=\left[\dfrac{-\left(\sqrt{x}-1\right)}{\left(x+1\right)}\right]:\left(\dfrac{x+1+\sqrt{x}}{x+1}\right)\)
\(P=\left[\dfrac{-\left(\sqrt{x}-1\right)}{x+1+\sqrt{x}}\right]\)
b) điều kiện \(x+\sqrt{x}+1\ne0\)
Giả sử P\(\le0\)
\(\Rightarrow\left[\dfrac{-\left(\sqrt{x}-1\right)}{x+1+\sqrt{x}}\right]\le0\)
\(-(\sqrt{x}-1)\le0\)
\(\Rightarrow\sqrt{x}-1\le0\Leftrightarrow\sqrt{x}\le1\Leftrightarrow x\le1\)
Vậy khi x\(\le1\) thì P \(\le0\)
\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+1+\sqrt{x}}{x+1}=P\)
\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\dfrac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right).\dfrac{x+1}{x+1+\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\dfrac{x+1}{x+1+\sqrt{x}}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}.\dfrac{1}{x+1+\sqrt{x}}\)
\(=\dfrac{1-\sqrt{x}}{x+\sqrt{x}+1}\)
b/DKXD:x≥0,x≠1,x≠-1
\(P=\dfrac{1-\sqrt{x}}{x+\sqrt{x}+1}< 0\)
Vi x+can(x)+1>0 , P<0
\(=>1-\sqrt{x}< 0\)
=>x>1
Vay để P<0 thì x>1