ta có:\(x^2+y^2+z^2\ge xy+yz+xz\)(cái nầy quen \(\in\) r)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)(1)
\(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)
tương tự ta cũng có:\(y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)(2)
cộng theo vế (1)và (2): \(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(3\left(x^2+y^2+z^2\right)+3\ge2.6=12\)
\(\Leftrightarrow x^2+y^2+z^2\ge3\)
dấu = xảy ra khi x=y=z=1