Bài 2:
b)\(x^3-x^2-x=\frac{1}{3}\)
\(\Leftrightarrow x^3=x^2+x+\frac{1}{3}\)
\(\Leftrightarrow3x^3=3\left(x^2+x+\frac{1}{3}\right)\)
\(\Leftrightarrow3x^3=3x^2+3x+1\)
\(\Leftrightarrow4x^3=x^3+3x^2+3x+1\)
\(\Leftrightarrow4x^3=\left(x+1\right)^3\)\(\Leftrightarrow\sqrt[3]{4}x=x+1\)
\(\Leftrightarrow\sqrt[3]{4}x-x=1\)\(\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
c)\(x^4+2x^3-6x^2+4x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2-3x+1\right)=0\)
Ok...
Ta có: \(x^3=-3x^2+3x-1\)
\(\Leftrightarrow2x^3=x^3-3x^2+3x-1\)
\(\Leftrightarrow2x^3=\left(x-1\right)^3\)
\(\Leftrightarrow\sqrt[3]{2}x=x-1\)
\(\Leftrightarrow\left(1-\sqrt[3]{2}\right)x=1\)
\(\Leftrightarrow x=\dfrac{1}{1-\sqrt[3]{2}}\)