\(\Delta=\left(-2\right)^2-4\left(-m^2\right)\\ =4+4m^2>0\forall x\)
=> pt có 2 no x1 ; x2
ÁP dụng vi ét
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2\end{matrix}\right.\)
\(\left(x_1+1\right)\left(x_2+1\right)=-3\\ x_1x_2+x_2+x_1+1+3=0\\ \left(x_1+x_2\right)+x_1x_2+4=0\\ 2-m^2+4=0\\ -m^2=-6\\ m^2=6\\ m=\sqrt{6};m=-\sqrt{6}\)
a=1; b=-2; c=-m2
Vì ac<=0 nên phương trình luôn có hai nghiệm trái dấu
\(\left(x_1+1\right)\left(x_2+1\right)=-3\)
\(\Leftrightarrow x_1x_2+\left(x_1+x_2\right)=-4\)
\(\Leftrightarrow-m^2+2=-4\)
=>-m2=-6
hay \(m=\pm\sqrt{6}\)