a: Thay m=1 vào phương trình, ta được:
\(x^2+2\left(1+1\right)x-2\cdot1^2+1^2=0\)
=>\(x^2+4x-1=0\)
=>\(\left(x+2\right)^2=5\)
=>\(x+2=\pm\sqrt{5}\)
=>\(x=-2\pm\sqrt{5}\)
a: Thay m=1 vào phương trình, ta được:
\(x^2+2\left(1+1\right)x-2\cdot1^2+1^2=0\)
=>\(x^2+4x-1=0\)
=>\(\left(x+2\right)^2=5\)
=>\(x+2=\pm\sqrt{5}\)
=>\(x=-2\pm\sqrt{5}\)
Cho phương trình: x^2 - 2mx + 3m - 2 = 0a . giải pt vs m=-1b cmr pt luôn có 2 nghiệm phân biệt vs mọi m
Cho pt: x²-2(m-1)x+2m-5 a, chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m b, Tìm m để pt có 2 nghiệm cùng dấu . Khi đó 2 nghiệm mang dấu gì
Cho pt \(x^2-2\left(m+1\right)x+m-4=0\) (m là tham số)
a, giải pt khi m=4
b, C/m rằng với mọi giá trị của m pt luôn có 2 nghiệm phân biệt
cho pt x²-(2m-1)x+m-1=0 . a Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m . b Tìm m để pt có 2 nghiệm trái dấu . c Tìm m để pt có 2 nghiệm cùng dấu
cho pt x^2+2(1-m)x-3+m=0
a) giải pt với m=0
b)cm pt luôn có hai nghiệm phân biệt với mọi m
c)tìm giá trị của m để pt có 2 nghiệm đối
Cho pt x2 + 2(m+1)x - 2m4 + m2 = 0 (m là tham số)
a) Giải pt khi m = 1
b) Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi m
Cho pt bậc hai ẩn x: x2 - 2mx + 2m - 2 = 0 (1)
a) Giải pt (1) khi m = 0, m = 1.
b) Chứng minh pt (1) luôn có hai nghiệm phân biệt với mọi m ϵ R.
c) Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.
d) Biết x1, x2 là hai nghiệm của pt (1). Tìm m để x12 + x22 = 4.
e) Tìm m để I = x12 + x22 đạt giá trị nhỏ nhất.
cho \(x^2-2\left(m-1\right)x-2m=0\) (m tham số). CMR: PT luôn có 2 nghiệm phân biệt với mọi m. Gọi `x_1 ;x_2` là 2 nghiệm của PT, tìm tất cả giá trị m để \(x_1^2+x_1-x_2=5-2m\)
Cho phương trình bậc hai x2 -2(m+1)x +(2m-4) =0
Giaỉ pt khi m = -2
CM với mọi m, pt luôn có 2 nghiệm phân biệt
Gọi x1, x2 là hai nghiệm của pt, tính A = x12 + x22 theo m
Tìm gt của m để A đạt GTNN