\(\Delta'=\left(m+1\right)^2-m+3=\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)
Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m-3\end{matrix}\right.\)
Do \(x_1\) là nghiệm nên:
\(x_1^2-2\left(m+1\right)x_1+m-3=0\Leftrightarrow x_1^2-2mx_1+m=2x_1+3\)
Thay vào bài toán:
\(\left(2x_1+3-1\right)\left(x_2+1\right)=4\)
\(\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)=2\)
\(\Leftrightarrow x_1x_2+x_1+x_2+1=2\)
\(\Leftrightarrow m-3+2\left(m+1\right)+1=2\)
\(\Leftrightarrow m=\dfrac{2}{3}\)