Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

\(x^2-2\left(m+1\right)x+2m=0\). CMR pt có 2 nghiệm x1, x2 thỏa mãn:

a. \(3x^2_1+3x_2^2-5x_1^2x_2-5x_1x_2^2=-4\)

b. \(\left|x_1\right|-\left|x_2\right|=5\)

Akai Haruma
27 tháng 1 lúc 21:42

Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-2m\geq 0\Leftrightarrow m^2+1\geq 0$

$\Leftrightarrow m\in\mathbb{R}$

Áp dụng định lý Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)

a.

$|x_1-x_2|=16$

$\Leftrightarrow \sqrt{(x_1-x_2)^2}=16$

$\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}=16$

$\Leftrightarrow \sqrt{[2(m+1)]^2-8m}=16$

$\Leftrightarrow \sqrt{4(m+1)^2-8m}=16$

$\Leftrightarrow \sqrt{4m^2+4}=16$

$\Leftrightarrow 2\sqrt{m^2+1}=16$

$\Leftrightarrow \sqrt{m^2+1}=8\Leftrightarrow m^2+1=64$

$\Leftrightarrow m=\pm \sqrt{63}$ (tm)

b/

$|x_1|-|x_2|=5$

$\Rightarrow (|x_1|-|x_2|)^2=25$

$\Leftrightarrow x_1^2+x_2^2-2|x_1x_2|=25$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2-2|x_1x_2|=25$

$\Leftrightarrow 4(m+1)^2-4m-4|m|=25(*)$

Nếu $m\geq 0$ thì:

$(*)\Leftrightarrow 4(m+1)^2-8m=25$

$\Leftrightarrow 4m^2+4m-25=0$

$\Leftrightarrow m=\frac{1}{2}(-1+ \sqrt{26})$ (do $m\geq 0$)

Nếu $m<0$ thì:

$(*)\Leftrightarrow 4(m+1)^2=25$

$\Leftrightarrow m+1=\pm \frac{5}{2}$

$\Leftrightarrow m=\frac{3}{2}$ hoặc $m=\frac{-7}{2}$

Do $m<0$ nên $m=\frac{-7}{2}$


Các câu hỏi tương tự
Lizy
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
ĐỖ NV1
Xem chi tiết
ngan kim
Xem chi tiết
Thảo Thảo
Xem chi tiết
Khánh Anh
Xem chi tiết
Việt Anh Nguyễn
Xem chi tiết
....
Xem chi tiết