\(\left\{{}\begin{matrix}x-y=5\\x^2-y^2=15\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-y=5\\x+y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
\(x^3-y^3=4^3-\left(-1\right)^3=65\)
x2-y2=15
⇒(x-y)(x+y)=15
⇒ 5(x+y)=15
⇒ x+y=3
x-y=5, x+y=3⇒x-y+x+y=5+3
⇒ 2x=8
⇒ x=4
x+y=3 ⇒ 4+y=3
⇒ y=-1
x3-y3=43-(-1)3=64+1=65
Có : `x^2-y^2=15`
`->(x-y)(x+y)=15`
`->5(x+y)=15`
`->x+y=3`
Mà `x-y=5`
`->x=4;y=-1`
`->x^3+y^3=4^3-(-1)^3=64+1=65`
Ta có: \(\left\{{}\begin{matrix}x-y=5\\\left(x-y\right)\left(x+y\right)=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=5\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Ta có: \(x^3-y^3\)
\(=4^3-\left(-1\right)^3\)
=64+1
=65