`x-y=5`
`<=>(x-y)^2=25`
`<=>x^2-2xy+y^2=25`
`<=>15-2xy=25`
`<=>2xy=-10`
`<=>xy=-5`
`=>x^3-y^3`
`=(x-y)(x^2+xy+y^2)`
`=5.(15-5)`
`=5.10=50`
Ta có: \(x-y=5\)
\(\Leftrightarrow x^2+y^2-10xy=25\)
\(\Leftrightarrow15-10xy=25\)
\(\Leftrightarrow10xy=-10\)
hay xy=-1
Ta có: \(x^3-y^3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)\)
\(=5^3+3\cdot5\cdot\left(-1\right)\)
\(=125-15=110\)