Tham khảo:
Để lập một số tự nhiên có 4 chữ số từ các số 0 đến 6 sao cho mỗi chữ số đều khác nhau và chữ số đứng đầu lớn hơn chữ số đứng cuối, ta thực hiện các bước sau:
1. Chọn chữ số đứng đầu: Có 6 cách chọn (từ 1 đến 6).
2. Chọn chữ số thứ hai: Có 6 cách chọn (từ 0 đến 6, loại trừ chữ số đã chọn ở bước 1).
3. Chọn chữ số thứ ba: Có 5 cách chọn (từ 0 đến 6, loại trừ 2 chữ số đã chọn ở bước 1 và bước 2).
4. Chọn chữ số cuối cùng: Chữ số cuối cùng phải lớn hơn chữ số đầu tiên, vì vậy chỉ có 3 cách chọn (từ 0 đến 2).
Tổng số cách lập số tự nhiên có 4 chữ số đôi một khác nhau và chữ số đầu lớn hơn số đứng cuối là: \(6 \times 6 \times 5 \times 3 = 540\).
Tính xác suất lập số như vậy:
\[P = \frac{\text{Số cách lập số như vậy}}{\text{Tổng số cách lập}} = \frac{540}{7 \times 6 \times 6 \times 5} = \frac{540}{1260} = \frac{9}{21} = \frac{3}{7}\]
Vậy xác suất số được lập có 4 chữ số đôi một khác nhau và chữ số đứng đầu lớn hơn số đứng cuối là \( \frac{3}{7} \).
Không gian mẫu: \(A_7^4-A_6^3=720\)
Gọi số đó là \(\overline{abcd}\)
- Với \(a=1\Rightarrow\) d có 1 cách chọn (b=0), bộ bc có \(A_5^2\) cách
- Với \(a=2\Rightarrow\) d có 2 cách chọn (1;0), bộ bc \(A_5^2\) cách
Theo quy luật đó, đến \(a=6\Rightarrow d\) có 5 cách chọn, bộ bc vẫn có \(A_5^2\) cách
Nên số số thỏa mãn là: \(A_5^2.\left(1+2+3+4+5\right)=300\) số
Xác suất: \(P=\dfrac{300}{720}=\dfrac{5}{12}\)