\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Sửa đề: \(B=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{97\cdot99}\)
=>\(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{98}{99}=\dfrac{49}{99}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}\)
\(A=\dfrac{100}{100}-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
__________________
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(B=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(B=\dfrac{1}{2}.\left(1-\dfrac{1}{99}\right)\)
\(B=\dfrac{1}{2}.\left(\dfrac{99}{99}-\dfrac{1}{99}\right)\)
\(B=\dfrac{1}{2}.\dfrac{98}{99}\)
\(B=\dfrac{49}{99}\)
\(#NqHahh\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dots+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dots+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
---
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dots+\dfrac{1}{97.99}\) (sửa đề)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dots+\dfrac{2}{97.99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dots+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}.\dfrac{98}{99}=\dfrac{49}{99}\)
Công thức: \(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{99.100}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
A = (\(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)) - (\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\)) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) - ... - (\(\dfrac{1}{99}\) - \(\dfrac{1}{99}\))
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\) - 0 - 0 - ... - 0
A = \(\dfrac{99}{100}\)