Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Phúc

Tính giá trị của biểu thức : \(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\) biết a+b+c=0

Hoàng Lê Bảo Ngọc
27 tháng 5 2016 lúc 21:36

Cách 1 . \(A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)

Đặt \(\frac{a-b}{c}=x\)\(\frac{b-c}{a}=y\) ; \(\frac{c-a}{b}=z\)

Ta có : \(\frac{x+y}{z}=\frac{\frac{a-b}{c}+\frac{b-c}{a}}{\frac{c-a}{b}}=\frac{ab\left(a-b\right)+cb\left(b-c\right)}{ac\left(c-a\right)}=\frac{b\left(b-a-c\right)}{ac}=\frac{2b^2}{ac}=\frac{2b^3}{abc}\)

tương tự : \(\frac{y+z}{x}=\frac{2c^3}{abc}\)\(\frac{x+z}{y}=\frac{2a^3}{abc}\)

\(\Rightarrow A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1\)

\(=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Áp dụng bài toán phụ : Nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\) (có thể chứng minh bằng cách rút a = - b - c  rồi thay vào tổng ba lập phương) được : 

\(A=3+\frac{2}{abc}.3abc=3+6=9\)

Lê Chí Cường
27 tháng 5 2016 lúc 21:42

Đặt \(\frac{a-b}{c}=x=>\frac{c}{a-b}=\frac{1}{x}\)

\(\frac{b-c}{a}=y=>\frac{a}{b-c}=y\)

\(\frac{c-a}{b}=z=>\frac{b}{c-a}=\frac{1}{z}\)

=>\(A=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=>\(A=x.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+y.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+z.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=>\(A=1+\frac{x}{y}+\frac{x}{z}+1+\frac{y}{x}+\frac{y}{z}+1+\frac{z}{x}+\frac{z}{y}\)

=>\(A=3+\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

=>\(A=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\)

Lại có: \(\frac{x+z}{y}=\frac{\frac{a-b}{c}+\frac{c-a}{b}}{\frac{b-c}{a}}=\frac{\frac{ab-b^2}{bc}+\frac{c^2-ac}{bc}}{\frac{b-c}{a}}=\frac{\frac{ab-b^2+c^2-ac}{bc}}{\frac{b-c}{a}}\)

\(=\frac{\frac{\left(ab-ac\right)-\left(b^2-c^2\right)}{bc}}{\frac{b-c}{a}}=\frac{\frac{a.\left(b-c\right)-\left(b+c\right).\left(b-c\right)}{bc}}{\frac{b-c}{a}}=\frac{\frac{\left(a-b-c\right).\left(b-c\right)}{bc}}{\frac{b-c}{a}}\)

\(=\frac{\left(a-b-c\right).\left(b-c\right).a}{\left(b-c\right).bc}=\frac{\left(a-b-c\right).a}{bc}=\frac{\left(a+a-a-b-c\right).a}{bc}\)

\(=\frac{\left[2a-\left(a+b+c\right)\right].a}{bc}\)

Vì a+b+c=0

=>\(\frac{x+z}{y}=\frac{\left(2a-0\right).a}{bc}=\frac{2a^2}{bc}=\frac{2a^3}{abc}\)

Chứng minh tương tự, ta có:

\(\frac{x+y}{z}=\frac{2b^3}{abc}\)

\(\frac{y+z}{x}=\frac{2c^3}{abc}\)

=>\(A=3+\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}=3+\frac{3a^3}{abc}+\frac{3b^3}{abc}+\frac{3c^3}{abc}\)

=>\(A=3+\frac{2a^3+2b^3+2c^3}{abc}\)

=>\(A=3+\frac{2.\left(a^3+b^3+c^3\right)}{abc}\)

Vì a+b+c=0

=>a=-(b+c)

=>\(a^3=\left[-\left(b+c\right)\right]^3\)

=>\(a^3=-\left(b+c\right)^3\)

=>\(a^3=-\left[b^3+3bc.\left(b+c\right)+c^3\right]\)

=>\(a^3=-b^3-3bc.\left(b+c\right)-c^3\)

=>\(a^3+b^3+c^3=-3bc.\left(b+c\right)\)

Vì a+b+c=0=>b+c=-a

=>\(a^3+b^3+c^3=-3bc.\left(-a\right)\)

=>\(a^3+b^3+c^3=3abc\)

Thay vào A, ta có:

\(A=3+\frac{2.\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+\frac{6.abc}{abc}=3+6=9\)

=>A=9

Vậy A=9

Hoàng Lê Bảo Ngọc
27 tháng 5 2016 lúc 21:49

Cách 2. Đặt \(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\) ; \(Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)

\(\Rightarrow P=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)}{abc}\)

Xét riêng : \(ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)=ab\left[-\left(b-c\right)-\left(c-a\right)\right]+bc\left(b-c\right)+ac\left(c-a\right)\)

\(=\left[-ab\left(b-c\right)+bc\left(b-c\right)\right]+\left[-ab\left(c-a\right)+ac\left(c-a\right)\right]\)

\(=b.\left(c-a\right).\left(b-c\right)+a\left(c-a\right)\left(c-b\right)=\left(c-a\right)\left(b-c\right)\left(b-a\right)\)

Vậy : \(P=\frac{\left(c-a\right)\left(b-c\right)\left(b-a\right)}{abc}\)

Tiếp theo, rút gọn Q như sau : 

Đặt \(x=b-c\)\(y=c-a\)\(z=a-b\)

Ta có : \(x-y=a+b-2c=-c-2c=-3c\)

\(y-z=b+c-2a=-a-2a=-3a\)

\(z-x=c+a-2b=-b-2b=-3b\)

\(\Rightarrow3Q=\frac{-\left(y-z\right)}{x}+\frac{-\left(z-x\right)}{y}+\frac{-\left(x-y\right)}{z}\)\(\Rightarrow-3Q=\frac{y-z}{x}+\frac{z-x}{y}+\frac{x-y}{z}\)

Rút gọn tương tự như P, ta được : \(-3Q=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{xyz}=\frac{\left(-3c\right).\left(-3a\right).\left(3b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(\Rightarrow Q=-\frac{9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Vậy : \(A=PQ=\frac{\left(c-a\right)\left(c-b\right)\left(a-b\right)}{abc}.\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(\Rightarrow A=9\)


Các câu hỏi tương tự
Trần Thu Phương
Xem chi tiết
Mi Trần
Xem chi tiết
Diệu Anh Hoàng
Xem chi tiết
le thi khanh huyen
Xem chi tiết
Love Panda
Xem chi tiết
Lung Thị Linh
Xem chi tiết
Trương Trần Duy Tân
Xem chi tiết
Fresh
Xem chi tiết
Minh Nguyen
Xem chi tiết