Ta có \(A=\sqrt[3]{182+\sqrt{33125}}+\sqrt[3]{182-\sqrt{33125}}\)
\(\Rightarrow A^3=364+3.\sqrt[3]{182+\sqrt{33125}}.\sqrt[3]{182-\sqrt{33125}}.A\)
\(\Leftrightarrow A^3=364-3A\)
\(\Leftrightarrow\left(A-7\right)\left(A^2+7A+52\right)=0\)
Vì \(A^2+7A+52=\left(A^2+7A+\frac{49}{4}\right)+\frac{159}{4}=\left(A+\frac{7}{2}\right)^2+\frac{159}{4}>0\)
Do đó A - 7 = 0 => A = 7