có ai giúp tui
\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\sqrt{3}+2\)
\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)
\(\sqrt{8\sqrt{3}-2\sqrt{25\sqrt{12}}+8\sqrt{\sqrt{192}}}\)
2. cho A=\(\sqrt{15a^2-8a\sqrt{15}+16}\)
a. Rút gọn A
b. Tính A khi a=\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\)
2) \(A=\sqrt{15a^2-8a\sqrt{15}+16}\\ =\sqrt{\left(a\sqrt{15}-4\right)^2}\)
b) Khi a=\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\) thì
\(A=\sqrt{\left[\left(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\right)\sqrt{15}-4\right]^2}\)
\(=\sqrt{\left[\left(3+5\right)-4\right]^2}\)
\(=\sqrt{4^2}\)
\(=4\)