a. Chứng minh : \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. Áp dụng : Tính giá trị của biểu thức :
\(M=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
cảm ơn các bạn trước nhé!
Bài 1 : Thực hiện phép tính :
a ) \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\)
b ) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
c ) \(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}\)
d ) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
e ) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
f ) \(\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
g ) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}\)
h ) \(\left(\sqrt{56}-2\sqrt{6}-\sqrt{14}\right)\sqrt{14}+\sqrt{84}\)
k ) \(\left(\frac{1}{1-\sqrt{3}}-\frac{1}{1+\sqrt{3}}\right).\left(\sqrt{3}-1\right)\)
l ) \(\sqrt{21+8\sqrt{5}}+\sqrt{21-8\sqrt{5}}\)
m ) \(\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
n ) \(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
Làm không nổi thì câu nào biết thì làm làm từ từ dần dần giúp nha các bạn
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3+3\sqrt{4}}}+...+\frac{1}{2017\sqrt{2016}+2016\sqrt{2017}}\)
Tính giá trị của biểu thức .
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
AI BIẾT LÀM HỘ NHA ! TỚ TICK CHO
1, A= \(\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x+1}}{x+\sqrt{x+1}}-\frac{1}{\sqrt{x-1}}\)
2, chứng minh biểu thức sau có giá trị ko phụ thuộc vào x
A= \(\sqrt{x}+\frac{3\sqrt{2-\sqrt{3}}.6\sqrt{7+4\sqrt{3}}-x}{4\sqrt{9-4\sqrt{5}}.\sqrt{2}+\sqrt{5}+\sqrt{x}}\)
chứng minh giá trị biểu thức P=\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\) không phụ thuộc vào biến số x
Bài 1: Tính giá trị biểu thức: P=\(\sqrt{x+24+7\sqrt{2x-1}}+\sqrt{x+4-3\sqrt{2x-1}}\)
với\(\frac{1}{2}\le x\le5\)
Bài 2: Chứng minh rằng: P=\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)là 1 số nguyên
Tính
a,,\(\sqrt[3]{7-5\sqrt{2}}+\sqrt[6]{8}\)
b,\(\sqrt[3]{4}\cdot\sqrt[3]{1-\sqrt{3}}\cdot\sqrt[6]{4+2\sqrt{3}}\)
c,\(\frac{2}{\sqrt[3]{3}-1}-\frac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\)
Thực hiện phép tính sau
a, \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
b, \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
c, \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
d, \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)